Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979320

RESUMO

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Assuntos
Cianobactérias/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Organelas/metabolismo , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/fisiologia , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(42): e2211244119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215485

RESUMO

Desert-inhabiting cyanobacteria can tolerate extreme desiccation and quickly revive after rehydration. The regulatory mechanisms that enable their vegetative cells to resurrect upon rehydration are poorly understood. In this study, we identified a single gene family of high light-inducible proteins (Hlips) with dramatic expansion in the Nostoc flagelliforme genome and found an intriguingly special convergence formed through four tandem gene duplication. The emerged four independent hlip genes form a gene cluster (hlips-cluster) and respond to dehydration positively. The gene mutants in N. flagelliforme were successfully generated by using gene-editing technology. Phenotypic analysis showed that the desiccation tolerance of hlips-cluster-deleted mutant decreased significantly due to impaired photosystem II repair, whereas heterologous expression of hlips-cluster from N. flagelliforme enhanced desiccation tolerance in Nostoc sp. PCC 7120. Furthermore, a transcription factor Hrf1 (hlips-cluster repressor factor 1) was identified and shown to coordinately regulate the expression of hlips-cluster and desiccation-induced psbAs. Hrf1 acts as a negative regulator for the adaptation of N. flagelliforme to the harsh desert environment. Phylogenetic analysis revealed that most species in the Nostoc genus possess both tandemly repeated Hlips and Hrf1. Our results suggest convergent evolution of desiccation tolerance through the coevolution of tandem Hlips duplication and Hrf1 in subaerial Nostoc species, providing insights into the mechanism of desiccation tolerance in photosynthetic organisms.


Assuntos
Nostoc , Complexo de Proteína do Fotossistema II , Dessecação , Nostoc/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Fatores de Transcrição/metabolismo
3.
Mol Microbiol ; 120(5): 740-753, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804047

RESUMO

The filamentous cyanobacterium Anabaena sp. PCC 7120 is able to form heterocysts for nitrogen fixation. Heterocyst differentiation is initiated by combined-nitrogen deprivation, followed by the commitment step during which the developmental process becomes irreversible. Mature heterocysts are terminally differentiated cells unable to divide, and cell division is required for heterocyst differentiation. Previously, we have shown that the HetF protease regulates cell division and heterocyst differentiation by cleaving PatU3, which is an inhibitor for both events. When hetF is required during the developmental program remains unknown. Here, by controlling the timing of hetF expression during heterocyst differentiation, we provide evidence that hetF is required just before the beginning of heterocyst morphogenesis. Consistent with this finding, transcriptome data show that most of the genes known to be involved in the early step (such as hetR and ntcA) or the commitment step (such as hetP and hetZ) of heterocyst development could be expressed in the ΔhetF mutant. In contrast, most of the genes involved in heterocyst morphogenesis and nitrogen fixation remain repressed in the mutant. These results indicated that in the absence of hetF, heterocyst differentiation is able to be initiated and proceeds to the stage just before heterocyst envelope formation.


Assuntos
Anabaena , Cianobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Cianobactérias/metabolismo , Diferenciação Celular
4.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391210

RESUMO

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Assuntos
Nostoc , Raios Ultravioleta , Humanos , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Nostoc/metabolismo , Fotossíntese/fisiologia
5.
Plant Cell Environ ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38932650

RESUMO

Aquatic ferns of the genus Azolla (Azolla) form highly productive symbioses with filamentous cyanobacteria fixing N2 in their leaf cavities, Nostoc azollae. Stressed symbioses characteristically turn red due to 3-deoxyanthocyanidin (DA) accumulation, rare in angiosperms and of unknown function. To understand DA accumulation upon cold acclimation and recovery, we integrated laser-desorption-ionization mass-spectrometry-imaging (LDI-MSI), a new Azolla filiculoides genome-assembly and annotation, and dual RNA-sequencing into phenotypic analyses of the symbioses. Azolla sp. Anzali recovered even when cold-induced DA-accumulation was inhibited by abscisic acid. Cyanobacterial filaments generally disappeared upon cold acclimation and Nostoc azollae transcript profiles were unlike those of resting stages formed in cold-resistant sporocarps, yet filaments re-appeared in leaf cavities of newly formed green fronds upon cold-recovery. The high transcript accumulation upon cold acclimation of AfDFR1 encoding a flavanone 4-reductase active in vitro suggested that the enzyme of the first step in the DA-pathway may regulate accumulation of DAs in different tissues. However, LDI-MSI highlighted the necessity to describe metabolite accumulation beyond class assignments as individual DA and caffeoylquinic acid metabolites accumulated differentially. For example, luteolinidin accumulated in epithelial cells, including those lining the leaf cavity, supporting a role for the former in the symbiotic interaction during cold acclimation.

6.
Plant Cell Environ ; 47(7): 2675-2692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600764

RESUMO

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.


Assuntos
Gleiquênias , Lactonas , Simbiose , Animais , Lactonas/metabolismo , Gleiquênias/fisiologia , Gleiquênias/microbiologia , Gleiquênias/efeitos dos fármacos , Dípteros/fisiologia , Glicosilação , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/genética , Nostoc/fisiologia , Nostoc/genética , Nostoc/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
7.
J Sci Food Agric ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087308

RESUMO

Nostoc sphaeroides Kützing is a freshwater edible cyanobacterium that is rich in active substances such as polysaccharides, proteins and lipids; it has a variety of pharmacological effects such as antioxidant, anti-inflammatory, antitumor and cholesterol-lowering effects; and is often used as a traditional Chinese medicine with many potential applications in food, cosmetics, medical diagnostics and disease treatment. However, to meet the needs of different fields, such as medicine, there is an urgent need for basic research and technological innovation in culture technology, extraction and preparation of active substances, and the pharmacological mechanism of N. sphaeroides. This paper reviews the pharmacological effects of N. sphaeroides active substances, discusses current culture techniques and methods for extracting active components, and outlines the challenges encountered in cultivating and industrializing N. sphaeroides while discussing future development trends. © 2024 Society of Chemical Industry.

8.
Biochem Biophys Res Commun ; 641: 18-26, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36516585

RESUMO

Various studies have suggested the presence of triacylglycerol in cyanobacteria, but no convincing evidence exists. We purified a substance co-migrating with triacylglycerol in thin-layer chromatography and determined its structure using mass spectrometry, gas chromatography, and 1H and 13C NMR. The major components were palmitoyl and stearoyl plastoquinols (acyl plastoquinol). Acyl plastoquinol has never been described before, although acyloxy derivative of plastoquione has been described as plastoquinone B. The level of acyl plastoquinol was 0.4% of the total lipids. We still do not have clear evidence for the presence of triacylglycerol. If present, the maximum triacylglycerol level must be at most 10% of acyl plastoquinol. The Synechocystis Slr2103 protein was suggested to synthesize triacylglycerol, but the product could be acyl plastoquinol. The possible roles of this novel compound in photosynthesis should be a new focus of research.


Assuntos
Plastoquinona , Synechocystis , Triglicerídeos/metabolismo , Plastoquinona/metabolismo , Cromatografia em Camada Fina , Synechocystis/metabolismo
9.
Mol Genet Genomics ; 298(1): 37-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36264383

RESUMO

Owing to their crucial role in genome maintenance, RecQ helicases are ubiquitous and present across organisms. Though the multiplicity of RecQ helicases is well known in higher organisms, it is rare among bacteria. The ancient cyanobacterium Nostoc sp. strain PCC7120 was found to have three annotated RecQ helicases. This study aims at understanding its structural differences and evolution through bioinformatics approach and functionality through expression analysis studies. Nostoc RecQ helicases were found to be transcriptionally regulated by LexA and DNA damage inducing stresses. Bioinformatic analysis revealed that all three RecQ helicases of Nostoc possess helicases_C and Zn+2-binding domains. Two of the helicases (AnRecQ and AnRecQ2) lacked the complete RQC and HRDC domains, and AnRecQ2 had an additional Phosphoribosyl transferase domain (Pribosyltran), also seen in RecQ-like helicase (RqlH) protein of Mycobacterium smegmatis. AnRecQ1, which was similar to most bacterial RecQ helicases, differed in having a long C-terminal tail. STRING analysis revealed that the proteins also differed in their predicted protein interactome. Phylogenetic analysis suggested that the multiple recQ genes may have been acquired through duplication and acquisition of additional domains from the smallest of the RecQ helicases (AnRecQ) to cater multiple functions required to deal with the harsh environmental conditions. In course of evolution, however, the multiplicity was lost with the modern-day bacteria and lower eukaryotes which retained fewer RecQ helicases, while further duplication of the acquired RECQ occurred in higher animals and plants to deal with cellular complexity.


Assuntos
Nostoc , RecQ Helicases , Biologia Computacional , Nostoc/enzimologia , Filogenia , Estrutura Terciária de Proteína , RecQ Helicases/genética , RecQ Helicases/química , RecQ Helicases/metabolismo
10.
J Exp Bot ; 74(19): 6145-6157, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37422707

RESUMO

Nitrogen-fixing cyanobacteria from the order Nostocales are able to establish symbiotic relationships with diverse plant species. They are promiscuous symbionts, as the same strain of cyanobacterium is able to form symbiotic biological nitrogen-fixing relationships with different plants species. This review will focus on the different types of cyanobacterial-plant associations, both endophytic and epiphytic, and provide insights from a structural viewpoint, as well as our current understanding of the mechanisms involved in the symbiotic crosstalk. In all these symbioses, the benefit for the plant is clear; it obtains from the cyanobacterium fixed nitrogen and other bioactive compounds, such as phytohormones, polysaccharides, siderophores, or vitamins, leading to enhanced plant growth and productivity. Additionally, there is increasing use of different cyanobacterial species as bio-inoculants for biological nitrogen fixation to improve soil fertility and crop production, thus providing an eco-friendly, alternative, and sustainable approach to reduce the over-reliance on synthetic chemical fertilizers.


Assuntos
Cianobactérias , Simbiose , Plantas/microbiologia , Fixação de Nitrogênio , Nitrogênio
11.
Crit Rev Food Sci Nutr ; 63(27): 8975-8991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35416723

RESUMO

Nostoc sphaeroides is an edible Cyanobacterium which has high nutritional value and is widely used in dietary supplements and therapeutic products. N. sphaeroides contains protein, fatty acid, minerals and vitamins. Its polysaccharides, phycobilin, phycobiliproteins and some lipids are highly bioactive. Thus, N. sphaeroides possesses anti-oxidation, anti-inflammation and cholesterol reducing functions. This paper reviews and evaluates the literature on nutritionally and functionally important compounds of N. sphaeroides. It also reviews and evaluates the processing of technologies used to process N. sphaeroides from fresh harvest to dry particulates including pretreatment, sterilization and drying, including their impact on sensorial and nutritional values. This review shows that a suitable combination of ultrasound, radio frequency and pulse spouted microwave with traditional sterilization and drying technologies greatly improves the sensorial and nutritive quality of processed N. sphaeroides and improves their shelf life; however, further research is needed to evaluate these hybrid technologies. Once suitably processed, N. sphaeroides can be used in food, cosmetics and pharmaceutical drugs as an ingredient.


Assuntos
Nostoc , Suplementos Nutricionais/análise , Colesterol , Dessecação
12.
Photochem Photobiol Sci ; 22(4): 795-807, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36550226

RESUMO

The biotechnological potential of Nostoc linckia as a biofertilizer and source of bioactive compounds makes it important to study its growth physiology and productivity. Since nitrogen is a fundamental component of N. linckia biomass, we compared the growth and biochemical composition of cultures grown in BG11 (i.e., in the presence of nitrate) and BG110 (in the absence of nitrate). Cultures grown in BG11 accumulated more cell biomass reaching a dry weight of 1.65 ± 0.06 g L-1, compared to 0.92 ± 0.01 g L-1 in BG110 after 240 h of culture. Biomass productivity was higher in culture grown in BG11 medium (average 317 ± 38 mg L-1 day-1) compared to that attained in BG110 (average 262 ± 37 mg L-1 day-1). The chlorophyll content of cells grown in BG11 increased continuously up to (39.0 ± 1.3 mg L-1), while in BG110 it increased much more slowly (13.6 ± 0.8 mg L-1). Biomass grown in BG11 had higher protein and phycobilin contents. However, despite the differences in biochemical composition and pigment concentration, between BG11 and BG110 cultures, both their net photosynthetic rates and maximum quantum yields of the photosystem II resulted in similar.


Assuntos
Nitratos , Nostoc , Nitratos/metabolismo , Fotossíntese , Nostoc/metabolismo , Clorofila/metabolismo , Biomassa
13.
Photochem Photobiol Sci ; 22(1): 103-113, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36190690

RESUMO

The internalization of near-infrared (NIR) optical nanoprobes in photosynthetic microbes can be exploited for applications ranging from energy conversion to biomolecule delivery. However, the intrinsic, species-dependent properties of microbial cell walls, including their surface charge density, composition, thickness, and elasticity, can severely impact nanoprobe uptake and affect the cellular response. An examination of the interaction of the optical nanoprobe in various species and its impact on cell viability is, therefore, imperative for the development of new imaging technologies. Herein, we extend the technology recently developed for internalizing fluorescent single-walled carbon nanotubes (SWCNTs) in prokaryotes, specifically unicellular Synechocystis sp. PCC 6803, to a filamentous cyanobacterial strain, Nostoc punctiforme. Using a combination of NIR fluorescence, scanning electron microscopy (SEM), and Raman spectroscopy, we investigate uptake in vegetative cells as well as differentiated heterocysts. We demonstrate a strong dependence of long-term cell integrity, activity, and viability on SWCNT surface functionalization. We further show differential uptake of SWCNTs across a single filament, with positively charged functionalized SWCNTs preferentially localizing within the heterocysts of the filament. This cell dependency of the nanoparticle internalization motivates the use of SWCNTs as a NIR stain for monitoring cell differentiation.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Microscopia Eletrônica de Varredura
14.
J Gastroenterol Hepatol ; 38(12): 2185-2194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37731216

RESUMO

BACKGROUND: In recent years, the incidence of alcoholic liver disease (ALD) has gradually increased, the development of ALD is attached great attentions. Nostoc commune Vauch. polysaccharide (NCVP) is beneficial to maintain the gut health, but the protective effect of NCVP on the liver has not been reported yet. PURPOSE: To study the protective effect and the underlying mechanisms of NCVP on ALD, a mouse model of acute ALD was established. STUDY DESIGN AND METHODS: We built an acute ALD mouse model and explored the protective effect of NCVP through the detection of cytokines, histological examination, determination of short chain fatty acids, and 16S rRNA analysis of gut microbiota. RESULTS: NCVP had hepatoprotective effects on acute alcohol-induced mice by improving antioxidant capacity, reducing oxidative stress and the serum cytokine levels (IL-1ß, IL-6, and TNF-α). Simultaneously, histopathological changes in liver indicated that NCVP could inhibit local hepatocyte necrosis, cytoplasmic vacuolation and inflammatory cell infiltration induced by alcohol. NCVP also increased the level of total short-chain fatty acids of acute ALD mice. In addition, NCVP could significantly decrease the Firmicutes/Bacteroidetes ratio and the abundance of Patescibacteria, Helicobacter, and Actinomycetes and increase the abundance of Lachospiraceae, Prevotellaceae-UCG-003, Lactobacillaceae, and Desulfovibrio. CONCLUSION: Our study proved that NCVP had in vivo hepatoprotective effect on acute ALD mice and provided scientific evidences that NCVP might be a promising drug candidate for the prevention and treatment of ALD.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Nostoc commune , Animais , Camundongos , RNA Ribossômico 16S , Hepatopatias Alcoólicas/prevenção & controle , Polissacarídeos/farmacologia , Fígado/patologia , Etanol/efeitos adversos , Citocinas , Camundongos Endogâmicos C57BL
15.
J Phycol ; 59(6): 1237-1257, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37889842

RESUMO

The present study describes two new Nostoc species, N. montejanii and N. tlalocii, based on a polyphasic approach that combines morphological, ecological, and genetic characteristics. The five investigated populations, including those from newly collected material from central Mexico, were observed to possess morphological features characteristic of the Nostoc genus. Results showed that both new species are strictly associated with running water, and they show clear differences in their habitat preferences. The 16S rRNA gene sequences of the five strains displayed between 98% and 99% similarity to the genus Nostoc sensu stricto. The 16S rRNA gene phylogenetic analyses inferred using Bayesian inference, maximum likelihood, and parsimony methods, placed these five strains in two separate clades distinct from other Nostoc species. The secondary structures of the 16S-23S internal transcribed spacer rRNA region in the two new species showed >10.5% dissimilarities in the operons when compared with other Nostoc species. In addition, clear morphological differences were observed between the two Mexican species, including the color of the colonies (black in N. montejanii and green in N. tlalocii), the size of the cells (greater in N. montejanii), and the number of polyphosphate granules present in the cells (one in N. montejanii and up to four in N. tlalocii).


Assuntos
Nostoc , Nostoc/genética , RNA Ribossômico 16S/genética , Filogenia , Teorema de Bayes , México , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , RNA Ribossômico 23S/genética
16.
Mar Drugs ; 21(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233478

RESUMO

Nocuolin A (1), an oxadiazine, was isolated from the cyanobacterium Nostoc sp. Its chemical structure was elucidated using NMR and mass spectroscopic data. From this compound, two new oxadiazines, 3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropyl acetate (2) and 4-{3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropoxy}-4-oxobutanoic acid (3), were synthesised. The chemical structures of these two compounds were elucidated by a combination of NMR and MS analysis. Compound 3 showed cytotoxicity against the ACHN (0.73 ± 0.10 µM) and Hepa-1c1c7 (0.91 ± 0.08 µM) tumour cell lines. Similarly, compound 3 significantly decreased cathepsin B activity in ACHN and Hepa-1c1c7 tumour cell lines at concentrations of 1.52 ± 0.13 nM and 1.76 ± 0.24 nM, respectively. In addition, compound 3 showed no in vivo toxicity in a murine model treated with a dose of 4 mg/kg body weight.


Assuntos
Catepsina B , Nostoc , Animais , Camundongos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Estrutura Molecular
17.
Mar Drugs ; 21(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36827142

RESUMO

Six new nostocyclophanes and four known compounds have been isolated from Nostoc linckia (Nostocaceae) cyanobacterial strain UTEX B1932. The new compounds, nostocyclophanes E-J (1-6), were characterized by NMR and MS techniques. The known compounds were nostocyclophanes B-D, previously isolated from this strain, and dedichloronostocyclophane D. Structural modifications on the new [7.7]paracyclophane analogs 1-5, isolated from the 80% methanol fraction, range from simple changes such as the lack of methylation or halogenation to more unusual modifications such as those seen in nostocyclophane H (4), in which the exocyclic alkyl chains are of different length; this is the first time this modification has been observed in this family of natural products. In addition, nostocyclophane J (6) is a linear analog in which C-20 is chlorinated in preparation for the presumed enzymatic Friedel-Craft cyclization needed to form the final ring structure, analogous to the biosynthesis of the related cylindrocyclophanes. Nostocyclophane D, dedichloronostocyclophane D, and nostocyclophanes E-J demonstrated moderate to weak growth inhibition against MDA-MB-231 breast cancer cells.


Assuntos
Nostoc , Nostoc/química , Espectroscopia de Ressonância Magnética
18.
Genomics ; 114(4): 110438, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35902068

RESUMO

Phylogenomic analysis of Nostocsp. MG11, a terrestrial cyanobacterium, and some terrestrial and freshwater Nostoc strains showed that the terrestrial strains grouped together in a distinctive clade, which reveals the effect of habitat on shaping Nostoc genomes. Terrestrial strains showed larger genomes and had higher predicted CDS contents than freshwater strains. Comparative genomic analysis demonstrated that genome expansion in the terrestrial Nostoc is supported by an increase in copy number of the core genes and acquisition of shared genes. Transcriptomic profiling analysis under desiccation stress revealed that Nostoc sp. MG11 protected its cell by induction of catalase, proteases, sucrose synthase, trehalose biosynthesis and maltodextrin utilization genes and maintained its normal metabolism during this condition by up-regulation of genes related to phycobilisomes and light reactions of photosynthesis, CO2 fixation and protein metabolism. These results provide insights into the strategies related to survival and adaptation of Nostoc strains to terrestrial environments.


Assuntos
Nostoc , Transcriptoma , Adaptação Fisiológica/genética , Genômica , Nostoc/genética , Nostoc/metabolismo , Fotossíntese/genética
19.
Bioprocess Biosyst Eng ; 46(10): 1447-1456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532892

RESUMO

Diafiltration (DF) is a separation method used to separate and concentrate macromolecules, such as polysaccharides and proteins. To obtain high-purity target molecules by DF, appropriate conditions should be used. In this study, a mathematical model was developed to suggest appropriate ultra-filtration (UF) membrane modules for the separation of phycocyanin (PC) by multistep DF. PC is a protein produced by microalgae. The contribution of each UF membrane module to PC productivity and purity at each stage of the multistep DF process was quantified by the proposed model. The parameters required as model inputs (k, Fα1, and Fα2) were experimentally determined by permeating PC-containing solution through UF membrane modules (150, 30, and 10 kDa cutoffs). The resulting analytical solutions and those predicted by the model were in close agreement. The PC purity increased from 0.20 to 0.30 when a 10 kDa UF membrane module was used in two-step DF. An orthogonal table was used to determine the combination of UF membrane modules needed to achieve higher purity of PC. The model predicted that the 30 kDa UF membrane module would have the highest contribution to PC productivity and purity at any position in a three-step DF. The developed model can help identify appropriate conditions for separating macromolecules by DF.


Assuntos
Nostoc commune , Ultrafiltração , Ultrafiltração/métodos , Ficocianina , Proteínas , Polissacarídeos
20.
Bioprocess Biosyst Eng ; 46(9): 1341-1350, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37460859

RESUMO

The cyanobacteria are the promising candidate for synthesizing gold nanoparticles (AuNPs), due to their ability to accumulate heavy metals from the cellular environment and additionally contain varied bioactive compounds as reducing and stabilizing agents. This study describes the N2-fixing cyanobacterium Nostoc calcicola-mediated bioreduction of AuNPs and the inherent antimicrobial, antioxidant, and antiproliferative activities in vitro. Biosynthesized Nc-AuNPs were characterized by spectral characterization techniques. The formation of AuNPs was physically confirmed by the colour change from pale green to dark violet. The UV-Vis analysis, further, proved the reduction in Nc-AuNPs with the cyanobacterium and showed a spectral peak at 527 nm. FESEM-EDX images suggested the surface morphology of the NPs as spherical, cuboidal, and size between 20 and 140 nm. The antimicrobial studies of Nc-AuNPs were carried out by agar-well diffusion method and MIC values against five pathogenic bacterial and two fungal strains were noted. The AuNPs exhibited potential antimicrobial activity against h-pathogenic bacteria with inhibitory zones ranging at 11-18 mm; against fungi ranging at 13-17 mm. Significant antioxidant potentialities were explored by a DPPH assay with an IC50 value of 55.97 µg/ mL. Furthermore, in the anticancer efficacy assay, the Nc-AuNPs inhibited cellular proliferation in human breast adenocarcinoma and cervical cancer cell lines at IC50 concentration, 37.3 µg/ml, and 44.5 µg/ml, respectively. Conclusively, N. calcicola would be an excellent source for synthesizing stable colloidal AuNPs that had significant credibility as phycological (algal) nanomedicines as novel prodrugs with multiple bioactivities.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nostoc , Humanos , Ouro/farmacologia , Ouro/química , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Fungos , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA