Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Hum Genomics ; 18(1): 76, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961447

RESUMO

BACKGROUND: Lipid-lowering drugs are widely used among the elderly, with some studies suggesting links to muscle-related symptoms. However, the causality remains uncertain. METHODS: Using the Mendelian randomization (MR) approach, we assessed the causal effects of genetically proxied reduced low-density lipoprotein cholesterol (LDL-C) through inhibitions of hydroxy-methyl-glutaryl-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), and Niemann-Pick C1-like 1 (NPC1L1) on sarcopenia-related traits, including low hand grip strength, appendicular lean mass, and usual walking pace. A meta-analysis was conducted to combine the causal estimates from different consortiums. RESULTS: Using LDL-C pooled data predominantly from UK Biobank, genetically proxied inhibition of HMGCR was associated with higher appendicular lean mass (beta = 0.087, P = 7.56 × 10- 5) and slower walking pace (OR = 0.918, P = 6.06 × 10- 9). In contrast, inhibition of PCSK9 may reduce appendicular lean mass (beta = -0.050, P = 1.40 × 10- 3), while inhibition of NPC1L1 showed no causal impact on sarcopenia-related traits. These results were validated using LDL-C data from Global Lipids Genetics Consortium, indicating that HMGCR inhibition may increase appendicular lean mass (beta = 0.066, P = 2.17 × 10- 3) and decelerate walking pace (OR = 0.932, P = 1.43 × 10- 6), whereas PCSK9 inhibition could decrease appendicular lean mass (beta = -0.048, P = 1.69 × 10- 6). Meta-analysis further supported the robustness of these causal associations. CONCLUSIONS: Genetically proxied HMGCR inhibition may increase muscle mass but compromise muscle function, PCSK9 inhibition could result in reduced muscle mass, while NPC1L1 inhibition is not associated with sarcopenia-related traits and this class of drugs may serve as viable alternatives to sarcopenia individuals or those at an elevated risk.


Assuntos
Hidroximetilglutaril-CoA Redutases , Análise da Randomização Mendeliana , Pró-Proteína Convertase 9 , Sarcopenia , Humanos , Sarcopenia/genética , Pró-Proteína Convertase 9/genética , Hidroximetilglutaril-CoA Redutases/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Proteínas de Membrana Transportadoras/genética , Hipolipemiantes/uso terapêutico , Hipolipemiantes/efeitos adversos , Proteínas de Membrana/genética , Masculino , Feminino , Idoso , Força da Mão
2.
J Proteome Res ; 23(1): 449-464, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38109854

RESUMO

Cancer's high incidence and death rate jeopardize human health and life, and it has become a global public health issue. Some members of NPCs have been studied in a few cancers, but comprehensive and prognostic analysis is lacking in most cancers. In this study, we used the Cancer Genome Atlas (TCGA) data genomics and transcriptome technology to examine the differential expression and prognosis of NPCs in 33 cancer samples, as well as to investigate NPCs mutations and their effect on patient prognosis and to evaluate the methylation level of NPCs in cancer. The linked mechanisms and medication resistance were subsequently investigated in order to investigate prospective tumor therapy approaches. The relationships between NPCs and immune infiltration, immune cells, immunological regulatory substances, and immune pathways were also investigated. Finally, the LUAD and KICH prognostic prediction models were built using univariate and multivariate COX regression analysis. Additionally, the mRNA and protein levels of NPCs were also identified.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Estudos Prospectivos , Genômica , Análise Multivariada , Mutação , Neoplasias/genética , Prognóstico , Proteína C1 de Niemann-Pick , Proteínas de Transporte Vesicular , Proteínas de Membrana Transportadoras
3.
Biochem Genet ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280151

RESUMO

A relationship between cholesterol levels and Niemann-Pick C1-Like 1 (NPC1L1) polymorphisms in diverse populations was found in previous studies. However, relevant research on this association in the Korean population is relatively scarce. Therefore, the current study sought to examine the correlation between the NPC1L1 rs217434 A > G polymorphism and clinical as well as biochemical variables pertaining to dyslipidemia in the Korean population. This cross-sectional single-center study included 1404 Korean subjects aged 20-86 years, grouped based on dyslipidemia presence (normal and dyslipidemia) and genotype (AA or AG). After adjusting for sex and age, it was discovered that the dyslipidemia group's BMI, diastolic blood pressure, glucose-related indicators, lipid profile, high-sensitivity C-reactive protein (hs-CRP), and parameters of oxidative stress were considerably different from the normal group's values. When grouped according to genotype, individuals in the AG group exhibited greater total cholesterol, low-density lipoprotein cholesterol, hs-CRP, and 8-epi-prostaglandin F2α in comparison to those in the AA group. Moreover, individuals with dyslipidemia and the AG genotype exhibited unfavorable outcomes for lipid profiles, markers related to glucose and inflammation, and markers of oxidative stress. This study provided evidence for a relationship between the NPC1L1 rs217434 A > G genotype and dyslipidemia in the Korean population, which highlights the potential of the NPC1L1 rs217434 A > G genotype as an early predictor of dyslipidemia.

4.
J Biomed Sci ; 30(1): 44, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370162

RESUMO

BACKGROUND: Cholesterol gallstone disease is a common disease. Reducing cholesterol burden is important to prevent/treat gallstone. In this study, we investigated the application of diosgenin (DG) to prevent the formation of gallstone in mice. METHODS: Adult male C57BL/6J mice were fed with the lithogenic diet (LD) only or LD supplemented with DG or ezetimibe for 8 weeks. Incidences of gallstone formation were documented. Intestine and liver tissues were collected to measure the lipid contents and expression of genes in cholesterol metabolism. Caco2 cells were treated with DG to monitor the regulation on cholesterol absorption and the transcriptional regulation of Npc1l1 gene. Changes of gut microbiota by DG was analyzed. Intraperitoneal injection of LPS on mice was performed to verify its effects on STAT3 activation and Npc1l1 expression in the small intestine. RESULTS: LD led to 100% formation of gallstones in mice. In comparison, dietary DG or ezetimibe supplementary completely prevents gallstones formation. DG inhibited intestinal cholesterol absorption in mice as well as in Caco2 cells by down-regulation of Npc1l1 expression. DG could directly inhibit phosphorylation of STAT3 and its transcriptional regulation of Npc1l1 expression. Furthermore, DG could modulate gut microbiota profiles and LPS mediated STAT3 activation and Npc1l1 expression. CONCLUSION: Our results demonstrated that dietary DG could inhibit intestinal cholesterol absorption through decreasing NPC1L1 expression to prevent cholesterol gallstone formation.


Assuntos
Diosgenina , Cálculos Biliares , Humanos , Camundongos , Masculino , Animais , Cálculos Biliares/prevenção & controle , Cálculos Biliares/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Diosgenina/farmacologia , Diosgenina/metabolismo , Células CACO-2 , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Intestinos , Colesterol , Dieta , Ezetimiba/farmacologia , Ezetimiba/metabolismo , Fígado/metabolismo
5.
Inflamm Res ; 72(3): 429-442, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583755

RESUMO

OBJECTIVE: Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in many major diseases, including atherosclerosis (AS). In the present study, we aimed to explore the transcriptomic m6A landscape of endothelial function-associated genes and identify potential regulators in AS progression. METHODS: The GEO data (GSE142386) from MeRIP-seq in human umbilical vein endothelial cells (HUVECs) with METTL3 knocked down or not were analyzed. RNA-seq was performed to identify differences in gene expression. Gene ontology (GO) functional and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were conducted to evaluate the potential functions of the differentially expressed genes. MeRIP-qPCR was used to measure the m6A and mRNA levels of the top 8 downregulated genes, and NPC1L1 was selected as the candidate gene. Oxidized low-density lipoprotein (ox-LDL) was used to stimulate HUVECs, and METTL3 or NPC1L1 was silenced in ox-LDL-treated cells. And Transwell, ELISA, and cell apoptosis assays were performed to assess cell functional injury. ApoE-/- mice were fed with high-fat diet for 8 weeks to establish an AS model, and adenovirus-mediated NPC1L1 shRNA or NC shRNA was injected into the mice through the tail vein. Mouse aortic tissue damage and plaque deposition were evaluated by H&E, Oil Red O, and TUNEL staining. RESULTS: One hundred and ninety-four hypermethylated m6A peaks and 222 hypomethylated peaks were detected in response to knockdown of METTL3. Genes with altered m6A peaks were significantly involved in the histone modification, enzyme activity, and formation of multiple complexes and were predominantly enriched in the MAPK pathway. NPC1L1 was a most significantly downregulated transcript in response to knockdown of METTL3. Moreover, knockdown of NPC1L1 or de-m6A (METTL3 knockdown)-mediated downregulation of NPC1L1 could improve ox-LDL-induced dysfunction of HUVECs in vitro and high-fat diet-induced atherosclerotic plaque in vivo, which was associated with the inactivation of the MAPK pathway. CONCLUSION: METTL3-mediated NPC1L1 mRNA hypermethylation facilitates AS progression by regulating the MAPK pathway, and NPC1L1 may be a novel target for the treatment of AS.


Assuntos
Aterosclerose , Proteínas de Membrana Transportadoras , Metiltransferases , Animais , Humanos , Masculino , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Metilação , Metiltransferases/metabolismo , Proteínas de Membrana Transportadoras/genética , RNA Mensageiro/metabolismo
6.
Lipids Health Dis ; 22(1): 6, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641489

RESUMO

BACKGROUND: Curcumin (Cur) is a bioactive dietary polyphenol of turmeric with various biological activities against several cancers. Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Intestinal cholesterol homeostasis is associated with CRC. Chemotherapy for CRC is related to varied adverse effects. Therefore, natural products with anti-cancer properties represent a potential strategy for primary prevention of CRC. METHODS: The present study used Cur as a therapeutic approach against CRC using the Caco-2 cell line. The cells were treated with different concentrations of Cur for different duration of time and then the proliferation ability of cells was assessed using Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine assays. Oil red O staining and cholesterol assay kit were used to evaluate cellular lipid content and cholesterol outward transportation. Finally, the protein expressions of cholesterol transport-related protein and signal transduction molecules were assessed using Western blot assay. RESULTS: Cur inhibited cell proliferation in Caco-2 cells in a dose- and time-dependent manner by activating the transient receptor potential cation channel subfamily A member 1 (TRPA1) channel. Activation of the TRPA1 channel led to increased intracellular calcium, peroxisome proliferator-activated receptor gamma (PPARγ) upregulation, and the subsequent downregulation of the specificity protein-1 (SP-1)/sterol regulatory element-binding protein-2 (SREBP-2)/Niemann-Pick C1-like 1 (NPC1L1) signaling pathway-related proteins, and finally reduced cholesterol absorption in Caco-2 cells. CONCLUSIONS: Cur inhibits cell proliferation and reduces cholesterol absorption in Caco-2 cells through the Ca2+/PPARγ/SP-1/SREBP-2/NPC1L1 signaling by activating the TRPA1 channel, suggesting that Cur can be used as a dietary supplement for the primary prevention of CRC. In Caco-2 cells, Cur first stimulates calcium influx by activating the TRPA1 channel, further upregulates PPARγ and downregulates SP-1/SREBP-2/NPC1L1 signaling pathway, and finally inhibits the absorption of cholesterol. TRPA1, transient receptor potential cation channel subfamily A member 1; NPC1L1, Niemann-Pick C1-like 1; PPARγ, peroxisome proliferator-activated receptor gamma; SP-1, specificity protein-1; SREBP-2, sterol regulatory element-binding protein-2; Cur, curcumin.


Assuntos
Curcumina , Proteínas de Membrana Transportadoras , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana/metabolismo , Células CACO-2 , Curcumina/farmacologia , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Cálcio/metabolismo , Colesterol/metabolismo , Proliferação de Células , Absorção Intestinal
7.
Mar Drugs ; 21(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132943

RESUMO

Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. In this study, we investigated the effect of laminarin on intestinal cholesterol uptake in vitro, as well as the lipid and morphological parameters in an in vivo model of high-fat diet (HFD)-fed mice, and addressed the question of whether Niemann-Pick C1-like 1 protein (NPC1L1), a key transporter mediating dietary cholesterol uptake, is involved in the mechanistic action of laminarin. In in vitro studies, BODIPY-cholesterol-labeled Caco-2 cells were examined using confocal microscopy and a fluorescence reader. The results demonstrated that laminarin inhibited cholesterol uptake into Caco-2 cells in a concentration-dependent manner (EC50 = 20.69 µM). In HFD-fed C57BL/6J mice, laminarin significantly reduced the serum levels of total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). It also decreased hepatic levels of TC, TG, and total bile acids (TBA) while promoting the excretion of fecal cholesterol. Furthermore, laminarin significantly reduced local villous damage in the jejunum of HFD mice. Mechanistic studies revealed that laminarin significantly downregulated NPC1L1 protein expression in the jejunum of HFD-fed mice. The siRNA-mediated knockdown of NPC1L1 attenuated the laminarin-mediated inhibition of cholesterol uptake in Caco-2 cells. This study suggests that laminarin significantly improves dyslipidemia in HFD-fed mice, likely by reducing cholesterol uptake through a mechanism that involves the downregulation of NPC1L1 expression.


Assuntos
Dieta Hiperlipídica , Dislipidemias , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Colesterol na Dieta/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Células CACO-2 , Camundongos Endogâmicos C57BL , Colesterol/metabolismo , Triglicerídeos/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
8.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067659

RESUMO

A new indole diterpene, 26-dihydroxyaflavininyl acetate (1), along with five known analogs (2-6) were isolated from the liquid fermentation of Aspergillus flavus GZWMJZ-288, an endophyte from Garcinia multiflora. The structures of these compounds were identified through NMR, MS, chemical reaction, and X-ray diffraction experiments. Enzyme inhibition activity screening found that compounds 1, 4, and 6 have a good binding affinity with NPC1L1, among which compound 6 exhibited a stronger binding ability than ezetimibe at a concentration of 10 µM. Moreover, compound 5 showed inhibitory activity against α-glucosidase with an IC50 value of 29.22 ± 0.83 µM, which is 13 times stronger than that of acarbose. The results suggest that these aflavinine analogs may serve as lead compounds for the development of drugs targeting NPC1L1 and α-glucosidase. The binding modes of the bioactive compounds with NPC1L1 and α-glucosidase were also performed through in silico docking studies.


Assuntos
Aspergillus flavus , Garcinia , Aspergillus flavus/metabolismo , alfa-Glucosidases/metabolismo , Acarbose/farmacologia , Difração de Raios X , Inibidores de Glicosídeo Hidrolases/química , Estrutura Molecular , Simulação de Acoplamento Molecular
9.
Breast Cancer Res ; 24(1): 12, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151363

RESUMO

BACKGROUND: Preclinical and epidemiological studies indicate a potential chemopreventive role of low-density lipoprotein cholesterol (LDL-C) -lowering drugs in the risks of breast cancer and prostate cancer, but the causality remains unclear. We aimed to evaluate the association of genetically proxied inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, Niemann-Pick C1-Like 1 (NPC1L1), and proprotein convertase subtilisin/kexin type 9 (PCSK9) with risks of breast cancer and prostate cancer using a two-sample Mendelian randomization (MR) method. METHODS: Single-nucleotide polymorphisms (SNPs) in HMGCR, NPC1L1, and PCSK9 associated with LDL-C in a genome-wide association study (GWAS) meta-analysis from the Global Lipids Genetics Consortium (GLGC; up to 188,577 European individuals) were used to proxy inhibition of HMG-CoA reductase, NPC1L1, and PCSK9. Summary statistics with outcomes were obtained from a GWAS meta-analysis of the Breast Cancer Association Consortium (BCAC; 228,951 European females) and a Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL; 140,254 European males) consortium. SNPs were combined into multiallelic models and MR estimates representing lifelong inhibition of targets were generated using the inverse-variance weighted method. RESULTS: Genetically proxied inhibition of HMG-CoA reductase (OR: 0.84; 95% CI 0.74-0.95; P = 0.005) and NPC1L1 (OR: 0.72; 95% CI 0.58-0.90; P = 0.005) equivalent to a 1-mmol/L (38.7 mg/dL) reduction in LDL-C was associated with reduced breast cancer risk. There were no significant associations of genetically proxied inhibition of PCSK9 with breast cancer. In contrast, genetically proxied inhibition of PCSK9 (OR: 0.81; 95% CI 0.73-0.90; P < 0.001) but not HMG-CoA reductase and NPC1L1 was negatively associated with prostate cancer. In the secondary analysis, genetically proxied inhibition of HMG-CoA reductase (OR: 0.82; 95% CI 0.71-0.95; P = 0.008) and NPC1L1 (OR: 0.66; 95% CI 0.50-0.86; P = 0.002) was associated with estrogen receptor-positive breast cancer, whereas there was no association of HMG-CoA reductase and NPC1L1 with estrogen receptor-negative breast cancer. CONCLUSIONS: Genetically proxied inhibition of HMG-CoA reductase and NPC1L1 was significantly associated with lower odds of breast cancer, while genetically proxied inhibition of PCSK9 was associated with reduced risk of prostate cancer. Further randomized controlled trials are needed to confirm the respective roles of these LDL-C-lowering drugs in breast cancer and prostate cancer.


Assuntos
Neoplasias da Mama , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias da Próstata , Acil Coenzima A , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , LDL-Colesterol/genética , Coenzima A , Estudo de Associação Genômica Ampla , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Masculino , Proteínas de Membrana Transportadoras/genética , Análise da Randomização Mendeliana , Oxirredutases , Pró-Proteína Convertase 9/genética , Neoplasias da Próstata/genética , Receptores de Estrogênio/genética
10.
J Gene Med ; 24(9): e3445, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35998373

RESUMO

BACKGROUND: Coronary heart disease and diabetes are highly interrelated and complex diseases. We proposed to investigate the association of genetic polymorphisms of the lipoprotein important regulatory genes Niemann-Pick C1-like 1 (NPC1L1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in patients with premature triple-vessel coronary disease (PTVD) with diabetes, blood glucose and body mass index. METHODS: Four single-nucleotide polymorphisms (SNPs) (rs11763759, rs4720470, rs2072183 and rs2073547) of NPC1L1 and three SNPs (rs12916, rs2303151 and rs4629571) of HMGCR were genotyped in 872 PTVD patients. RESULTS: After performing logistic regression analysis adjusted for age and sex, rs2303151 of HMGCR was related to the risk of diabetes in the dominance model (odds ratio = 1.35, 95% confidence interval = 1.01-1.80, p = 0.04). However, the four SNPs of NPC1L1 were not associated with the risk of diabetes. Further analyses showed that neither the above SNPs of NPC1L1, nor the SNPs of HMGCR were related to blood glucose and body mass index (all p > 0.05). CONCLUSIONS: We report that rs2303151 is a novel polymorphism of the HMGCR gene related to the risk of diabetes in PTVD patients, which suggests HMGCR may be a potential common targeted pathogenic pathways between coronary heart disease and diabetes.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Hidroximetilglutaril-CoA Redutases/genética , Glicemia , LDL-Colesterol/genética , Coenzima A/genética , Doença da Artéria Coronariana/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Oxirredutases/genética , Polimorfismo de Nucleotídeo Único
11.
Bioorg Med Chem Lett ; 75: 128974, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36064125

RESUMO

Emodin (EM) is one of the active components of the traditional Chinese medicine rhubarb, and there is evidence of its hypolipidemic activity, though the exact mechanism is unknown. NPC1L1 is a key protein in human cholesterol uptake that is primarily expressed in hepatocytes and gastrointestinal epithelial cells. Our findings suggest that rhodopsin inhibits cellular cholesterol uptake by influencing NPC1L1 cholesterol transport. The results showed that NBD-cholesterol uptake in human HepG2 cells was 27 %, 31.3 %, 33.6 %, 41.6 %, and 52.6 % of control after treatment with 100, 75, 50, 25, and 12.5 % M EM, respectively, compared to 50 % for 100 M Ezetimibe. Kinetic studies revealed that EM inhibited cellular uptake of cholesterol through anti-competitive inhibition. Furthermore, using confocal fluorescence quantification, we discovered that after cholesterol deprivation treatment reintroduced cholesterol supply, cholesterol uptake was significantly higher in HepG2 cells highly expressing NPC1L1 than in U2OS cells with low NPC1L1 expression. As a result, we hypothesize that EM may inhibit cholesterol uptake via NPC1L1 in human hepatocytes in an anti-competitive manner. Overall, as a dietary supplement or lipid-modifying drug, EM has the potential to lower cholesterol.


Assuntos
Emodina , Colesterol/metabolismo , Emodina/farmacologia , Ezetimiba/farmacologia , Humanos , Cinética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Rodopsina/metabolismo
12.
J Appl Microbiol ; 132(1): 562-570, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34133840

RESUMO

AIMS: Two putative probiotic strains, Lacticaseibacillus (Lc.) rhamnosus BFE5264 and Lactiplantibacillus (Lp.) plantarum NR74, have been shown to suppress cholesterol uptake and promote cholesterol efflux in Caco-2 cells. However, an in vivo beneficial effect of these strains on plasma cholesterol levels has not been verified yet; neither have the underlying mechanisms of regulating cholesterol metabolism clarified thus far. This study has focused on these two aspects. METHODS AND RESULTS: A murine model has been used, and the animals receiving a high-fat/high-cholesterol diet showed elevated plasma cholesterol levels. However, supplementation of Lc. rhamnosus BFE5264 and Lp. plantarum NR74 resulted in the down regulation of Niemann-Pick C1-like 1 (NPC1L1) in the intestine in addition to counteracting the diet-induced suppression of low-density lipoprotein receptor expression in the liver. ATP Binding Cassette Subfamily A Member 1 (ABCA1) was only significantly increased upon administration of Lc. rhamnosus BFE5264. CONCLUSIONS: The present findings demonstrate that supplementation with Lc. rhamnosus BFE5264 and Lp. plantarum NR74 may improve diet-induced hypercholesterolemia by suppression of cholesterol absorption in the small intestine and by supporting the regulation of cholesterol metabolism in the liver. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to understanding the beneficial effects of probiotics on host cholesterol metabolism and underlying mechanisms related to hypercholesterolemia.


Assuntos
Hipercolesterolemia , Probióticos , Animais , Células CACO-2 , Colesterol/metabolismo , Dieta , Humanos , Hipercolesterolemia/metabolismo , Absorção Intestinal , Intestinos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos
13.
Lipids Health Dis ; 21(1): 97, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209166

RESUMO

BACKGROUND: Cholesterol gallstone disease (CGD) is accompanied by biliary cholesterol supersaturation. Hepatic Niemann-Pick C1-like 1 (NPC1L1), which is present in humans but not in wild-type (WT) mice, promotes hepatocyte cholesterol uptake and decreases biliary cholesterol supersaturation. In contrast, intestinal NPC1L1 promotes intestinal cholesterol absorption, increasing biliary cholesterol supersaturation. Ezetimibe (EZE) can inhibit both hepatic and intestinal NPC1L1. However, whether hepatic NPC1L1 can affect CGD progress remains unknown. METHODS: Mice expressing hepatic NPC1L1 (NPC1L1hepatic-OE mice) were generated using Adeno-associated viruses (AAV) gene delivery. The protein level and function of hepatic NPC1L1 were examined under chow diet, high fat-cholesterol diet (HFCD), and lithogenic diet (LD) feeding. Gallstone formation rates were examined with or without EZE treatment. Fibroblast growth factor 15 (FGF15) treatment and inhibition of fibroblast growth factor receptor 4 (FGFR4) were applied to verify the mechanism of hepatic NPC1L1 degradation. RESULTS: The HFCD-fed NPC1L1hepatic-OE mice retained the biliary cholesterol desaturation function of hepatic NPC1L1, whereas EZE treatment decreased biliary cholesterol saturation and did not cause CGD. The ubiquitination and degradation of hepatic NPC1L1 were discovered in LD-fed NPC1L1hepatic-OE mice. Treatment of FGF15 during HFCD feeding and inhibition of FGFR4 during LD feeding could affect the protein level and function of hepatic NPC1L1. CONCLUSIONS: LD induces the ubiquitination and degradation of hepatic NPC1L1 via the FGF15-FGFR4 pathway. EZE may act as an effective preventative agent for CGD.


Assuntos
Proteínas de Membrana Transportadoras , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Animais , Colesterol/metabolismo , Dieta Hiperlipídica , Ezetimiba/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
14.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234807

RESUMO

Elevated cholesterol significantly increases the risk of developing atherosclerosis and coronary heart disease. The key to treating hypercholesterolemia is lowering plasma cholesterol levels. There have been no studies on the cholesterol-lowering potential of parthenolide (PTL), a naturally occurring small molecule from Tanacetum parthenium. Here, we first put forth PTL's cholesterol-lowering ability to inhibit cellular uptake of cholesterol in a dose-dependent manner. Its performance was on par with the positive control drug, ezetimibe. Niemann-Pick C1 Like-1 (NPC1L1) has been identified as a potential therapeutic target for hypercholesterolemia. The interaction of PTL with NPC1L1 could be explained by the results of molecular docking and filipin staining further reinforces this hypothesis. Furthermore, PTL reduced the expression of NPC1L1 in HepG2 cells in a concentration-dependent manner, which suggests that PTL functions as a potential NPC1L1 inhibitor with therapeutic potential for hypercholesterolemia.


Assuntos
Anticolesterolemiantes , Hipercolesterolemia , Hiperlipidemias , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Colesterol/metabolismo , Ezetimiba/farmacologia , Filipina , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Sesquiterpenos
15.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364321

RESUMO

Isoliquiritigenin (ISL) is a flavonoid with a chalcone structure extracted from the natural herb Glycyrrhiza glabra. Its anti-inflammatory, antibacterial, antioxidant, and anticancer activities have been extensively studied. Moreover, ISL also possess hypolipidemic and atherosclerosis-reducing effects. However, its cholesterol-lowering mechanisms have not been reported yet. Niemann Pick C1 Like 1 (NPC1L1) is a specific transporter of cholesterol uptake. In this study, we found for the first time that ISL downregulates NPC1L1 expression and competitively inhibits cellular cholesterol uptake by binding to NPC1L1 in a concentration-dependent manner in vitro. This study provides a theoretical basis for further investigation of the molecular mechanisms of its cholesterol-lowering effect in vivo and inspired emerging drug research for cholesterol-lowering purposes through NPC1L1 inhibition.


Assuntos
Anticolesterolemiantes , Chalconas , Chalconas/farmacologia , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Colesterol/metabolismo , Anticolesterolemiantes/farmacologia
16.
Curr Atheroscler Rep ; 23(11): 68, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468867

RESUMO

PURPOSE OF REVIEW: Coronary heart disease is the leading cause of mortality worldwide. Elevated blood cholesterol levels are not only the major but also the best modifiable cardiovascular risk factor. Lifestyle modifications which include a healthy diet are the cornerstone of lipid-lowering therapy. So-called functional foods supplemented with plant sterols lower blood cholesterol levels by about 10-15%. RECENT FINDINGS: In the recent revision of the ESC/EAS dyslipidemia guideline 2019, plant sterols are recommended for the first time as an adjunct to lifestyle modification to lower blood cholesterol levels. However, the German Cardiac Society (DGK) is more critical of food supplementation with plant sterols and calls for randomized controlled trials investigating hard cardiovascular outcomes. An increasing body of evidence suggests that plant sterols per se are atherogenic. This review discusses this controversy based on findings from in vitro and in vivo studies, clinical trials, and genetic evidence.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Hipercolesterolemia , Fitosteróis , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Humanos
17.
Br J Clin Pharmacol ; 87(10): 3916-3924, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33704808

RESUMO

AIMS: It is unknown whether long-term low-density lipoprotein cholesterol (LDL-c) lowering increases lifespan and longevity in a general population not selected for elevated cardiovascular risk. The present study aimed to investigate the overall and gene-specific effect of circulating LDL-c levels on lifespan and longevity in a general population. METHODS: Leveraging data from the Global Lipids Genetics Consortium (n = 173 082), we identified genetic variants to proxy LDL-c levels generally, and also through perturbation of particular drug targets (HMGCR, NPC1L1 and PCSK9). We investigated their association with lifespan (n = 1 012 240) using Mendelian randomization, and replicated results using the outcome of longevity to the 90th vs. 60th percentile age (11 262 cases/25 483 controls). RESULTS: A 1-standard deviation increase in genetically proxied LDL-c was associated with 1.2 years lower lifespan (95% confidence interval [CI] -1.55, -0.87; P = 3.83 × 10-12 ). Findings were consistent in statistical sensitivity analyses, and when considering the outcome of longevity (odds ratio for survival to the 90th vs 60th percentile age 0.72, 95% CI 0.64, 0.81, P = 7.83 × 10-8 ). Gene-specific Mendelian randomization analyses showed a significant effect of LDL-c modification through PCSK9 on lifespan (-0.99 years, 95% CI -1.43, 0.55, P = 6.80 × 10-6 ); however, estimates for HMGCR and NPC1L1 were underpowered. CONCLUSIONS: This genetic evidence supports that higher LDL-c levels reduce lifespan and longevity. In a general population that is not selected for increased cardiovascular risk, there is likely to be a net lifespan benefit of LDL-c lowering therapies, particularly for PCSK9 inhibitors, although randomized controlled trials are necessary before modification of clinical practice.


Assuntos
Longevidade , Pró-Proteína Convertase 9 , LDL-Colesterol , Humanos , Lactente , Longevidade/genética , Análise da Randomização Mendeliana , Pró-Proteína Convertase 9/genética , Fatores de Risco
18.
Mol Biol Rep ; 48(12): 7975-7984, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716864

RESUMO

BACKGROUND: The Niemann-Pick C1-Like 1 protein, a multi-transmembrane domain molecule, is critical for intestinal cholesterol absorption, and is the entry factor for hepatitis C virus (HCV). The Chinese tree shrew (Tupaia belangeri chinensis) is closer to primates in terms of genetic evolution than rodents. Previous studies indicated that the tree shrew was suitable for HCV research; however, little is known about tree shrew NPC1L1. METHODS AND RESULTS: TsNPC1L1 cDNA was amplified by rapid amplification of cDNA ends (RACE) technology. The cDNA sequence, its encoded protein structure, and expression profile were analyzed. Results indicated that the tsNPC1L1 mRNA is 4948 bp in length and encodes a 1326 amino acid protein. TsNPC1L1 possesses 84.97% identity in homology to human NPC1L1 which is higher than both mouse (80.37%) and rat (81.80%). The protein structure was also similar to human with 13 conserved transmembrane helices, and a sterol-sensing domain (SSD). Like human NPC1L1, the tsNPC1L1 mRNA transcript is highly expressed in small intestine, but it was also well-expressed in the lung and pancreas of the tree shrew. CONCLUSION: The homology of tree shrew NPC1L1 was closer to human than that of rodent NPC1L1. The expression of tsNPC1L1 was the highest in small intestine, and was detectable in lung and pancreas. These results may be useful in the study of tsNPC1L1 function in cholesterol absorption and HCV infection.


Assuntos
Proteínas de Membrana Transportadoras/genética , Tupaia/genética , Sequência de Aminoácidos , Animais , China , Clonagem Molecular , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , RNA Mensageiro/genética , Tupaia/metabolismo
19.
Parasitology ; 148(9): 1107-1115, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34024307

RESUMO

Coccidia are obligate apicomplexan parasites that affect humans and animals. In fast replicating species, in vitro merogony takes only 24­48 h. In this context, successful parasite proliferation requires nutrients and other building blocks. Coccidian parasites are auxotrophic for cholesterol, so they need to obtain this molecule from host cells. In humans, ezetimibe has been applied successfully as hypolipidaemic compound, since it reduces intestinal cholesterol absorption via blockage of Niemann−Pick C-1 like-1 protein (NPC1L1), a transmembrane protein expressed in enterocytes. To date, few data are available on its potential anti-parasitic effects in primary host cells infected with apicomplexan parasites of human and veterinary importance, such as Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. Current inhibition experiments show that ezetimibe effectively blocks T. gondii, B. besnoiti and N. caninum tachyzoite infectivity and replication in primary bovine endothelial host cells. Thus, 20 µm ezetimibe blocked parasite proliferation by 73.1−99.2%, via marked reduction of the number of tachyzoites per meront, confirmed by 3D-holotomographic analyses. The effects were parasitostatic since withdrawal of the compound led to parasite recovery with resumed proliferation. Ezetimibe-glucuronide, the in vivo most effective metabolite, failed to affect parasite proliferation in vitro, thereby suggesting that ezetimibe effects might be NPC1L1-independent.


Assuntos
Anticolesterolemiantes/farmacologia , Coccidiostáticos/farmacologia , Ezetimiba/farmacologia , Neospora/efeitos dos fármacos , Sarcocystidae/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Células Endoteliais , Toxoplasmose/parasitologia , Toxoplasmose/prevenção & controle , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/prevenção & controle
20.
Mol Divers ; 25(2): 673-686, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32067133

RESUMO

Nicotinic acid hydrazide was incorporated into new 4,5-dihydro-5-hydroxy-3,5-diphenylpyrazol-1-yl derivatives. Compounds 6a-h were synthesized, and their antihyperlipidemic activity was evaluated in high cholesterol diet-fed rat model. Compounds 6e, 6f were found to decrease the levels of serum total cholesterol by 14-19% compared to control group. Total triglycerides were also reduced by 24-28% and LDL cholesterol by 16%. As expected from parent niacin, compounds 6e and 6f caused an elevation of HDL cholesterol by 33-41%. Docking study supported the ability of designed compounds to block NPC1L1 active site in a manner similar to that observed with ezetimibe.


Assuntos
Hidrazinas/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Ácidos Nicotínicos/uso terapêutico , Pirazóis/uso terapêutico , Animais , Colesterol/sangue , Desenho de Fármacos , Hidrazinas/química , Hiperlipidemias/sangue , Hipolipemiantes/química , Masculino , Proteínas de Membrana Transportadoras/química , Simulação de Acoplamento Molecular , Ácidos Nicotínicos/química , Pirazóis/química , Ratos Wistar , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA