Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.511
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(4): 807-819.e21, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398338

RESUMO

The NRF2 transcription factor controls a cell stress program that is implicated in cancer and there is great interest in targeting NRF2 for therapy. We show that NRF2 activity depends on Fructosamine-3-kinase (FN3K)-a kinase that triggers protein de-glycation. In its absence, NRF2 is extensively glycated, unstable, and defective at binding to small MAF proteins and transcriptional activation. Moreover, the development of hepatocellular carcinoma triggered by MYC and Keap1 inactivation depends on FN3K in vivo. N-acetyl cysteine treatment partially rescues the effects of FN3K loss on NRF2 driven tumor phenotypes indicating a key role for NRF2-mediated redox balance. Mass spectrometry reveals that other proteins undergo FN3K-sensitive glycation, including translation factors, heat shock proteins, and histones. How glycation affects their functions remains to be defined. In summary, our study reveals a surprising role for the glycation of cellular proteins and implicates FN3K as targetable modulator of NRF2 activity in cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Feminino , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Glicosilação , Células HEK293 , Células Hep G2 , Xenoenxertos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução Genética
2.
Cell ; 178(2): 316-329.e18, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257023

RESUMO

Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias Pulmonares/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linhagem Celular Tumoral , Movimento Celular , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Estimativa de Kaplan-Meier , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional
3.
Cell ; 177(3): 737-750.e15, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002798

RESUMO

The proteasome mediates selective protein degradation and is dynamically regulated in response to proteotoxic challenges. SKN-1A/Nrf1, an endoplasmic reticulum (ER)-associated transcription factor that undergoes N-linked glycosylation, serves as a sensor of proteasome dysfunction and triggers compensatory upregulation of proteasome subunit genes. Here, we show that the PNG-1/NGLY1 peptide:N-glycanase edits the sequence of SKN-1A protein by converting particular N-glycosylated asparagine residues to aspartic acid. Genetically introducing aspartates at these N-glycosylation sites bypasses the requirement for PNG-1/NGLY1, showing that protein sequence editing rather than deglycosylation is key to SKN-1A function. This pathway is required to maintain sufficient proteasome expression and activity, and SKN-1A hyperactivation confers resistance to the proteotoxicity of human amyloid beta peptide. Deglycosylation-dependent protein sequence editing explains how ER-associated and cytosolic isoforms of SKN-1 perform distinct cytoprotective functions corresponding to those of mammalian Nrf1 and Nrf2. Thus, we uncover an unexpected mechanism by which N-linked glycosylation regulates protein function and proteostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Asparagina/metabolismo , Bortezomib/farmacologia , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Edição de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética
4.
Cell ; 173(4): 864-878.e29, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681454

RESUMO

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Família 4 do Citocromo P450/deficiência , Família 4 do Citocromo P450/genética , Descoberta de Drogas , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
5.
Annu Rev Biochem ; 86: 193-224, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28460188

RESUMO

Autophagy and the ubiquitin-proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.


Assuntos
Autofagia/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Mitofagia/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Conformação Proteica , Proteólise , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/genética , Transdução de Sinais , Ubiquitina/genética , Ubiquitinação
6.
Cell ; 171(3): 696-709.e23, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28965760

RESUMO

The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Proteoma/análise , Transcriptoma , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisteína/metabolismo , Receptor Nuclear Órfão DAX-1/metabolismo , Redes Reguladoras de Genes , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Neoplasias Pulmonares/metabolismo
7.
Mol Cell ; 84(1): 23-33, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38029751

RESUMO

Scientists in this field often joke, "If you don't have a mechanism, say it's ROS." Seemingly connected to every biological process ever described, reactive oxygen species (ROS) have numerous pleiotropic roles in physiology and disease. In some contexts, ROS act as secondary messengers, controlling a variety of signaling cascades. In other scenarios, they initiate damage to macromolecules. Finally, in their worst form, ROS are deadly to cells and surrounding tissues. A set of molecules with detoxifying abilities, termed antioxidants, is the direct counterpart to ROS. Notably, antioxidants exist in the public domain, touted as a "cure-all" for diseases. Research has disproved many of these claims and, in some cases, shown the opposite. Of all the diseases, cancer stands out in its paradoxical relationship with antioxidants. Although the field has made numerous strides in understanding the roles of antioxidants in cancer, many questions remain.


Assuntos
Antioxidantes , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Estresse Oxidativo , Neoplasias/genética , Transdução de Sinais
8.
Cell ; 165(6): 1361-1374, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259148

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, invariably fatal premature aging disorder. The disease is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A, leading, through unknown mechanisms, to diverse morphological, epigenetic, and genomic damage and to mesenchymal stem cell (MSC) attrition in vivo. Using a high-throughput siRNA screen, we identify the NRF2 antioxidant pathway as a driver mechanism in HGPS. Progerin sequesters NRF2 and thereby causes its subnuclear mislocalization, resulting in impaired NRF2 transcriptional activity and consequently increased chronic oxidative stress. Suppressed NRF2 activity or increased oxidative stress is sufficient to recapitulate HGPS aging defects, whereas reactivation of NRF2 activity in HGPS patient cells reverses progerin-associated nuclear aging defects and restores in vivo viability of MSCs in an animal model. These findings identify repression of the NRF2-mediated antioxidative response as a key contributor to the premature aging phenotype.


Assuntos
Senilidade Prematura/metabolismo , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Progéria/metabolismo , Senilidade Prematura/genética , Linhagem Celular , Sobrevivência Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Progéria/genética , RNA Interferente Pequeno , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Mol Cell ; 82(5): 920-932.e7, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245456

RESUMO

IDO1 oxidizes tryptophan (TRP) to generate kynurenine (KYN), the substrate for 1-carbon and NAD metabolism, and is implicated in pro-cancer pathophysiology and infection biology. However, the mechanistic relationships between IDO1 in amino acid depletion versus product generation have remained a longstanding mystery. We found an unrecognized link between IDO1 and cell survival mediated by KYN that serves as the source for molecules that inhibit ferroptotic cell death. We show that this effect requires KYN export from IDO1-expressing cells, which is then available for non-IDO1-expressing cells via SLC7A11, the central transporter involved in ferroptosis suppression. Whether inside the "producer" IDO1+ cell or the "receiver" cell, KYN is converted into downstream metabolites, suppressing ferroptosis by ROS scavenging and activating an NRF2-dependent, AHR-independent cell-protective pathway, including SLC7A11, propagating anti-ferroptotic signaling. IDO1, therefore, controls a multi-pronged protection pathway from ferroptotic cell death, underscoring the need to re-evaluate the use of IDO1 inhibitors in cancer treatment.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Cinurenina , Neoplasias , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Cinurenina/farmacologia , Neoplasias/metabolismo , Transdução de Sinais , Triptofano/metabolismo
10.
Immunity ; 52(4): 668-682.e7, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294407

RESUMO

The primary mechanisms supporting immunoregulatory polarization of myeloid cells upon infiltration into tumors remain largely unexplored. Elucidation of these signals could enable better strategies to restore protective anti-tumor immunity. Here, we investigated the role of the intrinsic activation of the PKR-like endoplasmic reticulum (ER) kinase (PERK) in the immunoinhibitory actions of tumor-associated myeloid-derived suppressor cells (tumor-MDSCs). PERK signaling increased in tumor-MDSCs, and its deletion transformed MDSCs into myeloid cells that activated CD8+ T cell-mediated immunity against cancer. Tumor-MDSCs lacking PERK exhibited disrupted NRF2-driven antioxidant capacity and impaired mitochondrial respiratory homeostasis. Moreover, reduced NRF2 signaling in PERK-deficient MDSCs elicited cytosolic mitochondrial DNA elevation and, consequently, STING-dependent expression of anti-tumor type I interferon. Reactivation of NRF2 signaling, conditional deletion of STING, or blockade of type I interferon receptor I restored the immunoinhibitory potential of PERK-ablated MDSCs. Our findings demonstrate the pivotal role of PERK in tumor-MDSC functionality and unveil strategies to reprogram immunosuppressive myelopoiesis in tumors to boost cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Epitelial do Ovário/imunologia , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/imunologia , Proteínas de Membrana/imunologia , Neoplasias Cutâneas/imunologia , eIF-2 Quinase/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Feminino , Humanos , Terapia de Imunossupressão , Interferon-alfa/genética , Interferon-alfa/imunologia , Interferon beta/genética , Interferon beta/imunologia , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Resposta a Proteínas não Dobradas/imunologia , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
11.
Mol Cell ; 80(5): 828-844.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33128871

RESUMO

Cancer-associated mutations that stabilize NRF2, an oxidant defense transcription factor, are predicted to promote tumor development. Here, utilizing 3D cancer spheroid models coupled with CRISPR-Cas9 screens, we investigate the molecular pathogenesis mediated by NRF2 hyperactivation. NRF2 hyperactivation was necessary for proliferation and survival in lung tumor spheroids. Antioxidant treatment rescued survival but not proliferation, suggesting the presence of distinct mechanisms. CRISPR screens revealed that spheroids are differentially dependent on the mammalian target of rapamycin (mTOR) for proliferation and the lipid peroxidase GPX4 for protection from ferroptosis of inner, matrix-deprived cells. Ferroptosis inhibitors blocked death from NRF2 downregulation, demonstrating a critical role of NRF2 in protecting matrix-deprived cells from ferroptosis. Interestingly, proteomics analyses show global enrichment of selenoproteins, including GPX4, by NRF2 downregulation, and targeting NRF2 and GPX4 killed spheroids overall. These results illustrate the value of spheroid culture in revealing environmental or spatial differential dependencies on NRF2 and reveal exploitable vulnerabilities of NRF2-hyperactivated tumors.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Proliferação de Células , Ferroptose , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Células A549 , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Esferoides Celulares/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
12.
Genes Dev ; 34(9-10): 688-700, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193353

RESUMO

Autophagy captures intracellular components and delivers them to lysosomes for degradation and recycling. Conditional autophagy deficiency in adult mice causes liver damage, shortens life span to 3 mo due to neurodegeneration, and is lethal upon fasting. As autophagy deficiency causes p53 induction and cell death in neurons, we sought to test whether p53 mediates the lethal consequences of autophagy deficiency. Here, we conditionally deleted Trp53 (p53 hereafter) and/or the essential autophagy gene Atg7 throughout adult mice. Compared with Atg7Δ/Δ mice, the life span of Atg7Δ/Δp53Δ/Δ mice was extended due to delayed neurodegeneration and resistance to death upon fasting. Atg7 also suppressed apoptosis induced by p53 activator Nutlin-3, suggesting that autophagy inhibited p53 activation. To test whether increased oxidative stress in Atg7Δ/Δ mice was responsible for p53 activation, Atg7 was deleted in the presence or absence of the master regulator of antioxidant defense nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2-/-Atg7Δ/Δ mice died rapidly due to small intestine damage, which was not rescued by p53 codeletion. Thus, Atg7 limits p53 activation and p53-mediated neurodegeneration. In turn, NRF2 mitigates lethal intestine degeneration upon autophagy loss. These findings illustrate the tissue-specific roles for autophagy and functional dependencies on the p53 and NRF2 stress response mechanisms.


Assuntos
Autofagia/genética , Longevidade/genética , Estresse Oxidativo/genética , Proteína Supressora de Tumor p53/genética , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Deleção de Genes , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
13.
EMBO J ; 42(14): e113349, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306101

RESUMO

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosforilação , Proteína Sequestossoma-1/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(28): e2319994121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959032

RESUMO

Upon encountering allergens, CD4+ T cells differentiate into IL-4-producing Th2 cells in lymph nodes, which later transform into polyfunctional Th2 cells producing IL-5 and IL-13 in inflamed tissues. However, the precise mechanism underlying their polyfunctionality remains elusive. In this study, we elucidate the pivotal role of NRF2 in polyfunctional Th2 cells in murine models of allergic asthma and in human Th2 cells. We found that an increase in reactive oxygen species (ROS) in immune cells infiltrating the lungs is necessary for the development of eosinophilic asthma and polyfunctional Th2 cells in vivo. Deletion of the ROS sensor NRF2 specifically in T cells, but not in dendritic cells, significantly abolished eosinophilia and polyfunctional Th2 cells in the airway. Mechanistically, NRF2 intrinsic to T cells is essential for inducing optimal oxidative phosphorylation and glycolysis capacity, thereby driving Th2 cell polyfunctionality independently of IL-33, partially by inducing PPARγ. Treatment with an NRF2 inhibitor leads to a substantial decrease in polyfunctional Th2 cells and subsequent eosinophilia in mice and a reduction in the production of Th2 cytokines from peripheral blood mononuclear cells in asthmatic patients. These findings highlight the critical role of Nrf2 as a spatial and temporal metabolic hub that is essential for polyfunctional Th2 cells, suggesting potential therapeutic implications for allergic diseases.


Assuntos
Asma , Fator 2 Relacionado a NF-E2 , Células Th2 , Animais , Feminino , Humanos , Camundongos , Asma/imunologia , Asma/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Eosinofilia/imunologia , Eosinofilia/metabolismo , Glicólise , Interleucina-33/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação Oxidativa , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(22): e2219470121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776365

RESUMO

NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células K562 , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Organelas/metabolismo
16.
Mol Cell ; 69(4): 699-708.e7, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452643

RESUMO

The metabolic pathways fueling tumor growth have been well characterized, but the specific impact of transforming events on network topology and enzyme essentiality remains poorly understood. To this end, we performed combinatorial CRISPR-Cas9 screens on a set of 51 carbohydrate metabolism genes that represent glycolysis and the pentose phosphate pathway (PPP). This high-throughput methodology enabled systems-level interrogation of metabolic gene dispensability, interactions, and compensation across multiple cell types. The metabolic impact of specific combinatorial knockouts was validated using 13C and 2H isotope tracing, and these assays together revealed key nodes controlling redox homeostasis along the KEAP-NRF2 signaling axis. Specifically, targeting KEAP1 in combination with oxidative PPP genes mitigated the deleterious effects of these knockouts on growth rates. These results demonstrate how our integrated framework, combining genetic, transcriptomic, and flux measurements, can improve elucidation of metabolic network alterations and guide precision targeting of metabolic vulnerabilities based on tumor genetics.


Assuntos
Sistemas CRISPR-Cas , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Redes e Vias Metabólicas , Fator 2 Relacionado a NF-E2/metabolismo , Transcriptoma , Glicólise , Células HeLa , Homeostase , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Via de Pentose Fosfato , Transdução de Sinais
17.
Bioessays ; 46(1): e2300176, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37919861

RESUMO

The transcription factor Nrf2 is the master regulator of cellular stress response, facilitating the expression of cytoprotective genes, including those responsible for drug detoxification, immunomodulation, and iron metabolism. FDA-approved Nrf2 activators, Tecfidera and Skyclarys for patients with multiple sclerosis and Friedreich's ataxia, respectively, are non-specific alkylating agents exerting side effects. Nrf2 is under feedback regulation through its target gene, transcriptional repressor Bach1. Specifically, in Parkinson's disease and other neurodegenerative diseases with Bach1 dysregulation, excessive Bach1 accumulation interferes with Nrf2 activation. Bach1 is a heme sensor protein, which, upon heme binding, is targeted for proteasomal degradation, relieving the repression of Nrf2 target genes. Ideally, a combination of Nrf2 stabilization and Bach1 inhibition is necessary to achieve the full therapeutic benefits of Nrf2 activation. Here, we discuss recent advances and future perspectives in developing small molecule inhibitors of Bach1, highlighting the significance of the Bach1/Nrf2 signaling pathway as a promising neurotherapeutic strategy.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica , Heme
18.
Proc Natl Acad Sci U S A ; 120(33): e2303809120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549281

RESUMO

Neuroinflammation is a common feature of neurodegenerative disorders such as Alzheimer's disease (AD). Neuroinflammation is induced by dysregulated glial activation, and astrocytes, the most abundant glial cells, become reactive upon neuroinflammatory cytokines released from microglia and actively contribute to neuronal loss. Therefore, blocking reactive astrocyte functions is a viable strategy to manage neurodegenerative disorders. However, factors or therapeutics directly regulating astrocyte subtypes remain unexplored. Here, we identified transcription factor NF-E2-related factor 2 (Nrf2) as a therapeutic target in neurotoxic reactive astrocytes upon neuroinflammation. We found that the absence of Nrf2 promoted the activation of reactive astrocytes in the brain tissue samples obtained from AD model 5xFAD mice, whereas enhanced Nrf2 expression blocked the induction of reactive astrocyte gene expression by counteracting NF-κB subunit p65 recruitment. Neuroinflammatory astrocytes robustly up-regulated genes associated with type I interferon and the antigen-presenting pathway, which were suppressed by Nrf2 pathway activation. Moreover, impaired cognitive behaviors observed in AD mice were rescued upon ALGERNON2 treatment, which potentiated the Nrf2 pathway and reduced the induction of neurotoxic reactive astrocytes. Thus, we highlight the potential of astrocyte-targeting therapy by promoting the Nrf2 pathway signaling for neuroinflammation-triggered neurodegeneration.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Disfunção Cognitiva/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(39): e2306288120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729198

RESUMO

Nonsmall cell lung cancer (NSCLC) is highly malignant with limited treatment options, platinum-based chemotherapy is a standard treatment for NSCLC with resistance commonly seen. NSCLC cells exploit enhanced antioxidant defense system to counteract excessive reactive oxygen species (ROS), which contributes largely to tumor progression and resistance to chemotherapy, yet the mechanisms are not fully understood. Recent studies have suggested the involvement of histones in tumor progression and cellular antioxidant response; however, whether a major histone variant H1.2 (H1C) plays roles in the development of NSCLC remains unclear. Herein, we demonstrated that H1.2 was increasingly expressed in NSCLC tumors, and its expression was correlated with worse survival. When crossing the H1c knockout allele with a mouse NSCLC model (KrasLSL-G12D/+), H1.2 deletion suppressed NSCLC progression and enhanced oxidative stress and significantly decreased the levels of key antioxidant glutathione (GSH) and GCLC, the catalytic subunit of rate-limiting enzyme for GSH synthesis. Moreover, high H1.2 was correlated with the IC50 of multiple chemotherapeutic drugs and with worse prognosis in NSCLC patients receiving chemotherapy; H1.2-deficient NSCLC cells presented reduced survival and increased ROS levels upon cisplatin treatment, while ROS scavenger eliminated the survival inhibition. Mechanistically, H1.2 interacted with NRF2, a master regulator of antioxidative response; H1.2 enhanced the nuclear level and stability of NRF2 and, thus, promoted NRF2 binding to GCLC promoter and the consequent transcription; while NRF2 also transcriptionally up-regulated H1.2. Collectively, these results uncovered a tumor-driving role of H1.2 in NSCLC and indicate an "H1.2-NRF2" antioxidant feedforward cycle that promotes tumor progression and chemoresistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Histonas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Antioxidantes , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Glutationa , Modelos Animais de Doenças
20.
Proc Natl Acad Sci U S A ; 120(30): e2217128120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463212

RESUMO

Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-ß accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neuroproteção , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA