Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Virol ; 98(5): e0029924, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38557225

RESUMO

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is highly conserved in all sequenced baculovirus genomes, and it plays important roles in both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. In this study, we characterized a cellular CRM1-dependent nuclear export signal (NES) of AcMNPV Ac93. Bioinformatic analysis revealed that AcMNPV Ac93 may contain an NES at amino acids 115-125. Green fluorescent protein (GFP) fused to the NES (GFP:NES) of AcMNPV Ac93 is localized to the cytoplasm of transfected cells. Multiple point mutation analysis demonstrated that NES is important for the nuclear export of GFP:NES. Bimolecular fluorescence complementation experiments and co-immunoprecipitation assays confirmed that Ac93 interacts with Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits cellular CRM1-dependent nuclear export of GFP:NES. To determine whether the NES in AcMNPV Ac93 is important for the formation of intranuclear microvesicles, an ac93-null AcMNPV bacmid was constructed; the wild-type and NES-mutated Ac93 were reinserted into the ac93-null AcMNPV bacmid. Immunofluorescence analysis showed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in infected cells, while the construct containing point mutations at residues 123 and 125 of Ac93 resulted in a defect in budded virus production and the abolishment of intranuclear microvesicles. Together, these data demonstrate that Ac93 contains a functional NES, which is required for the production of progeny viruses and the formation of intranuclear microvesicles.IMPORTANCEAutographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is important for the formation of intranuclear microvesicles. However, how the baculovirus manipulates Ac93 for the formation of intranuclear microvesicles is unclear. In this study, we identified a nuclear export signal (NES) at amino acids 115-125 of AcMNPV Ac93. Our results showed that the NES is required for the interaction between Ac93 and Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits the nuclear export of green fluorescent protein fused to the NES. Our analysis revealed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in AcMNPV-infected cells. Together, our results indicate that Ac93 participates in the formation of intranuclear microvesicles via the Ac93 NES-mediated CRM1 pathway.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Exportação Nuclear , Nucleopoliedrovírus , Proteínas Virais , Animais , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Proteína Exportina 1 , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Carioferinas/metabolismo , Nucleopoliedrovírus/metabolismo , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Células Sf9 , Spodoptera/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
J Biol Chem ; 299(5): 104703, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059181

RESUMO

The conversion of signal transducer and activator of transcription (STAT) proteins from latent to active transcription factors is central to cytokine signaling. Triggered by their signal-induced tyrosine phosphorylation, it is the assembly of a range of cytokine-specific STAT homo- and heterodimers that marks a key step in the transition of hitherto latent proteins to transcription activators. In contrast, the constitutive self-assembly of latent STATs and how it relates to the functioning of activated STATs is understood less well. To provide a more complete picture, we developed a co-localization-based assay and tested all 28 possible combinations of the seven unphosphorylated STAT (U-STAT) proteins in living cells. We identified five U-STAT homodimers-STAT1, STAT3, STAT4, STAT5A, and STAT5B-and two heterodimers-STAT1:STAT2 and STAT5A:STAT5B-and performed semi-quantitative assessments of the forces and characterizations of binding interfaces that support them. One STAT protein-STAT6-was found to be monomeric. This comprehensive analysis of latent STAT self-assembly lays bare considerable structural and functional diversity in the ways that link STAT dimerization before and after activation.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição STAT , Transativadores , Citocinas/metabolismo , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transativadores/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Multimerização Proteica
3.
J Virol ; 97(1): e0177322, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475764

RESUMO

Flaviviruses have a cytoplasmic replicative cycle, and crucial events, such as genome translation and replication, occur in the endoplasmic reticulum. However, some viral proteins, such as C, NS1, and NS5 from Zika virus (ZIKV) containing nuclear localization signals (NLSs) and nuclear export signals (NESs), are also located in the nucleus of Vero cells. The NS2A, NS3, and NS4A proteins from dengue virus (DENV) have also been reported to be in the nucleus of A549 cells, and our group recently reported that the NS3 protein is also located in the nucleus of Huh7 and C636 cells during DENV infection. However, the NS3 protease-helicase from ZIKV locates in the perinuclear region of infected cells and alters the morphology of the nuclear lamina, a component of the nuclear envelope. Furthermore, ZIKV NS3 has been reported to accumulate on the concave face of altered kidney-shaped nuclei and may be responsible for modifying other elements of the nuclear envelope. However, nuclear localization of NS3 from ZIKV has not been substantially investigated in human host cells. Our group has recently reported that DENV and ZIKV NS3 alter the nuclear pore complex (NPC) by cleaving some nucleoporins. Here, we demonstrate the presence of ZIKV NS3 in the nucleus of Huh7 cells early in infection and in the cytoplasm at later times postinfection. In addition, we found that ZIKV NS3 contains an NLS and a putative NES and uses the classic import (importin-α/ß) and export pathway via CRM-1 to be transported between the cytoplasm and the nucleus. IMPORTANCE Flaviviruses have a cytoplasmic replication cycle, but recent evidence indicates that nuclear elements play a role in their viral replication. Viral proteins, such as NS5 and C, are imported into the nucleus, and blocking their import prevents replication. Because of the importance of the nucleus in viral replication and the role of NS3 in the modification of nuclear components, we investigated whether NS3 can be localized in the nucleus during ZIKV infection. We found that NS3 is imported into the nucleus via the importin pathway and exported to the cytoplasm via CRM-1. The significance of viral protein nuclear import and export and its relationship with infection establishment is highlighted, emphasizing the development of new host-directed antiviral therapeutic strategies.


Assuntos
Transporte Ativo do Núcleo Celular , Carioferinas , Proteínas não Estruturais Virais , Zika virus , Animais , Humanos , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Chlorocebus aethiops , Carioferinas/metabolismo , Sinais de Localização Nuclear/metabolismo , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Infecção por Zika virus , Vírus da Dengue
4.
Traffic ; 22(12): 482-489, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34622522

RESUMO

Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.


Assuntos
Vírus da Raiva , Núcleo Celular/metabolismo , Sinais de Exportação Nuclear , Vírus da Raiva/metabolismo , Proteínas Virais/metabolismo , Virulência
5.
Biochem Biophys Res Commun ; 675: 155-161, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473530

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease and about one third of AML patients carry nucleophosmin (NPM1) mutation. Because 95% mutations give NPM1 an additional nuclear export signaling (NES) and dislocate NPM1 in cytoplasm (NPMc+), relocating NPM1 in nucleus provide an innovative strategy for treating this type of AML. The nuclear export of NPM1 depends on the nuclear protein export receptor XPO1, which recognizes the NES sequence on NPM1. Homoharringtonine (HHT) is a first-line chemotherapy drug of AML, yet the exact mechanism of its anti-AML activity is elusive. In this study, we found that HHT can directly target XPO1 to its NES-binding cleft, bind to Cys528 of XPO1, and inhibits its nuclear transport function. In addition, HHT can block NPMc+ proteins nuclear export and thus make NPMc+ AML cells much more sensitive to HHT treatment. Furthermore, the sensitivity of NPMc+ AML cells to HHT is a universal phenomenon irrespective of the different genetic lesions of AML. Taken together, our findings suggest that XPO1 is a new target of HHT and provide a novel strategy for NPMc+ AML treatment.


Assuntos
Leucemia Mieloide Aguda , Humanos , Mepesuccinato de Omacetaxina , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Mutação
6.
J Virol ; 96(3): e0083821, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787461

RESUMO

Over the past decades, studies on the biology of human adenoviruses (HAdVs) mainly focused on the HAdV prototype species C type 5 (HAdV-C5) and revealed fundamental molecular insights into mechanisms of viral replication and viral cell transformation. Recently, other HAdV species are gaining more and more attention in the field. Reports on large E1B proteins (E1B-55K) from different HAdV species showed that these multifactorial proteins possess strikingly different features along with highly conserved functions. In this work, we identified potential SUMO-conjugation motifs (SCMs) in E1B-55K proteins from HAdV species A to F. Mutational inactivation of these SCMs demonstrated that HAdV E1B-55K proteins are SUMOylated at a single lysine residue that is highly conserved among HAdV species B to E. Moreover, we provide evidence that E1B-55K SUMOylation is a potent regulator of intracellular localization and p53-mediated transcription in most HAdV species. We also identified a lysine residue at position 101 (K101), which is unique to HAdV-C5 E1B-55K and specifically regulates its SUMOylation and nucleo-cytoplasmic shuttling. Our findings reveal important new aspects on HAdV E1B-55K proteins and suggest that different E1B-55K species possess conserved SCMs while their SUMOylation has divergent cellular effects during infection. IMPORTANCE E1B-55K is a multifunctional adenoviral protein and its functions are highly regulated by SUMOylation. Although functional consequences of SUMOylated HAdV-C5 E1B-55K are well studied, we lack information on the effects of SUMOylation on homologous E1B-55K proteins from other HAdV species. Here, we show that SUMOylation is a conserved posttranslational modification in most of the E1B-55K proteins, similar to what we know about HAdV-C5 E1B-55K. Moreover, we identify subcellular localization and regulation of p53-dependent transcription as highly conserved SUMOylation-regulated E1B-55K functions. Thus, our results highlight how HAdV proteins might have evolved in different HAdV species with conserved domains involved in virus replication and differing alternative functions and interactions with the host cell machinery. Future research will link these differences and similarities to the diverse pathogenicity and organ tropism of the different HAdV species.


Assuntos
Proteínas E1B de Adenovirus/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/fisiologia , Interações Hospedeiro-Patógeno , Proteínas E1B de Adenovirus/química , Infecções por Adenovirus Humanos/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteína SUMO-1/metabolismo , Especificidade da Espécie , Sumoilação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Fish Shellfish Immunol ; 142: 109153, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821004

RESUMO

To decipher the functional characterization of Nucleophosmin 1a (NPM1a) from grass carp (Ctenopharyngodon idellus) (CiNPM1a), its cDNA was cloned and bioinformatic analysis were conducted. The full-length cDNA sequence of CiNPM1a is 1732 bp, which encodes 307 amino acids. CiNPM1a contains conserved domains of Nucleoplasmin domain, NPM1-C terminal domain, as well as nuclear localization signals, nuclear export signal (NES) and acid patches. There are 52 and 20 consensus amino acids exist in the Nucleoplasmin domain and the NPM1-C terminal domain of all blasted species. In addition, the immune function of CiNPM1a were analyzed. The Ciirf7, Ciifn1 and Ciifn2 transcription was inhibited, whereas the vp2 and vp7 expressions were enhanced in CiNPM1a overexpressing cells after GCRV infection (P < 0.05). Moreover, the Ciirf7, Ciifn1 and Ciifn2 mRNA levels were significantly up-regulated, but the vp2 and vp7 expressions were significantly down-regulated in CiNPM1a knockdown cells after infection. This indicated that CiNPM1a played negative roles in the induction of Type I IFN reaction and thus the GCRV replication. Finally, the NES domain that affect the nucleous-cytoplasm shuttle and the replication of GCRV were investigated. The deletion of NES1 and NES(1 + 2+3) absolutely limited the transloacation of CiNPM1a△NES1 protein and CiNPM1a △NES(1 + 2+3) protein to cytoplasm after infection, and the deletion of NES2 resulted in partially limitation of protein shuttle. In general, Ciirf3, Ciirf7, Ciifn1 and Ciifn2 expressions were enhanced in the CiNPM1a△NES1, CiNPM1a△NES2 and CiNPM1a△NES3 overexpression groups, and the deletion of functional domains in CiNPM1a led to significantly reduction of the vp2 and vp7 replication. The results indicated that CiNPM1a may be a target molecular for GCRV infection curation, and a candidate molecular for resistance strain breeding of grass carp.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , DNA Complementar , Nucleofosmina , Nucleoplasminas , Carpas/metabolismo , Citoplasma/metabolismo , Aminoácidos , Proteínas de Peixes
8.
Cell Mol Life Sci ; 79(7): 392, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35779171

RESUMO

Small extracellular vesicle (sEV)-mediated intercellular communication regulates multiple aspects of growth and development in multicellular organisms. However, the mechanism underlying cargo recruitment into sEVs is currently unclear. We show that the key nucleo-cytoplasmic transport (NCT) protein-RanGTPase, in its GTP-bound form (RanGTP), is enriched in sEVs secreted by mammalian cells. This recruitment of RanGTP into sEVs depends on the export receptor CRM1 (also called XPO1). The recruitment of GAPDH, a candidate cargo protein, into sEVs is regulated by the RanGTP-CRM1axis in a nuclear export signal (NES)-dependent manner. Perturbation of NCT through overexpression or depletion of nuclear transport components affected the recruitment of Ran, CRM1 and GAPDH into sEVs. Our studies, thus, suggest a link between NCT, particularly the Ran-CRM1 axis, and recruitment of NES-containing cargoes into the sEVs. Collectively, these findings implicate RanGTPase as a link between NCT and sEV mediated intercellular communication.


Assuntos
Comunicação Celular , Vesículas Extracelulares , Transporte Ativo do Núcleo Celular , Animais , Mamíferos , Sinais de Exportação Nuclear
9.
Proteins ; 90(2): 317-321, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34536244

RESUMO

Histone chaperone proteins assist in the formation of the histone octamers, the scaffold proteins that facilitate the packing of DNA into nucleosomes in the cell nucleus. One such histone chaperone protein is yeast nucleosome assembly protein 1 (yNap1), the crystal structure of which has been determined and found to have a nuclear export signal (NES) sequence within its long α-helix. Experimental evidence obtained from mutagenesis studies of the budding yeast suggests that the NES is necessary for the transport of yNap1 from the cell nucleus to the cytosol. However, the NES sequence is masked by an accessory domain, the exact role of which has not yet been elucidated, especially in nucleocytoplasmic transport. To clarify the role of the accessory domain, we focused on its phosphorylation, because proteomic experiments have identified multiple phosphorylation sites on yNap1. To study this phenomenon computationally, all-atom molecular dynamics simulations of the non-phosphorylated yNap1 (Nap1-nonP) and phosphorylated yNap1 (Nap1-P) systems were performed. Specifically, we addressed how the NES sequence is exposed to the protein surface by measuring its solvent-accessible surface area (SASA). It was found that the median of the SASA distribution of Nap1-P was greater than that of Nap1-nonP, indicating that phosphorylation in the accessory domain exposes the NES, resulting in its increased accessibility. In conclusion, yNap1 might modulate the accessibility of the NES by dislocating the accessory domain through its phosphorylation.


Assuntos
Chaperonas de Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sinais de Exportação Nuclear , Nucleossomos/metabolismo , Fosforilação , Sinais Direcionadores de Proteínas
10.
J Cell Sci ; 133(18)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32878938

RESUMO

Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.


Assuntos
Proteínas de Drosophila , Drosophila , Transporte Ativo do Núcleo Celular , Animais , Autofagia/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos , Fatores de Transcrição/metabolismo
11.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177195

RESUMO

Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although historically, it belonged to the Coronavirus (CoV) family. The nucleocapsid (N) proteins of CoVs are predominantly localized in the cytoplasm, where the viruses replicate, but in some cases the proteins are partially located in the nucleolus. Many studies have investigated the subcellular localization and nucleocytoplasmic trafficking signals of the CoV N proteins, but little is known about ToV N proteins. Here, we studied the subcellular localization of the bovine ToV (BToV) N protein (BToN) and characterized its nucleocytoplasmic trafficking signals. Unlike other CoVs, BToN in infected cells was transported mainly to the nucleolus during early infection but was distributed predominantly in the nucleoplasm rather than in the nucleolus during late infection. Interestingly, a small quantity of BToN was detected in the cytoplasm during infection. Examination of a comprehensive set of substitution or deletion mutants of BToN fused with enhanced green fluorescent protein (EGFP) revealed that clusters of arginine (R) residues comprise nuclear/nucleolar localization signals (NLS/NoLS), and the C-terminal region served as a chromosomal maintenance 1 (CRM1)-independent nuclear export signal (NES). Moreover, recombinant viruses with mutations in the NLS/NoLS, but retaining nuclear accumulation, were successfully rescued and showed slightly reduced growth ability, while the virus that lost the NLS/NoLS-mediated nuclear accumulation of BToN was not rescued. These results indicate that BToN uniquely accumulates mainly in nuclear compartments during infection, regulated by an R-rich NLS/NoLS and a CRM1-independent NES, and that the BToN accumulation in the nuclear compartment driven by NLS/NoLS is important for virus growth.IMPORTANCE ToVs are diarrhea-causing pathogens detected in many species, including humans. BToV has spread worldwide, leading to economic loss, and there is currently no treatment or vaccine available. Positive-stranded RNA viruses, including ToVs, replicate in the cytoplasm, and their structural proteins generally accumulate in the cytoplasm. Interestingly, BToN accumulated predominantly in the nucleus/nucleolus during all infectious processes, with only a small fraction accumulating in the cytoplasm despite being a major structural protein. Furthermore, we identified unique nucleocytoplasmic trafficking signals and demonstrated the importance of NLS/NoLS for virus growth. This study is the first to undertake an in-depth investigation of the subcellular localization and intracellular trafficking signals of BToN. Our findings additionally suggest that the NLS/NoLS-mediated nuclear accumulation of BToN is important for virus replication. An understanding of the unique features of BToV may provide novel insights into the assembly mechanisms of not only ToVs but also other positive-stranded RNA viruses.


Assuntos
Núcleo Celular/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Torovirus/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Mutação , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Proteínas do Nucleocapsídeo/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Torovirus/crescimento & desenvolvimento , Torovirus/metabolismo , Replicação Viral/genética
12.
Cell Mol Life Sci ; 78(14): 5587-5604, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34100981

RESUMO

To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Recombinação Homóloga , Survivina/metabolismo , Temozolomida/farmacologia , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose , Biomarcadores Tumorais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Núcleo Celular/genética , Proliferação de Células , Dano ao DNA , Reparo do DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Survivina/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Biol Chem ; 295(19): 6447-6456, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32217692

RESUMO

Interferon-regulated myxovirus resistance protein B (MxB) is an interferon-induced GTPase belonging to the dynamin superfamily. It inhibits infection with a wide range of different viruses, including HIV-1, by impairing viral DNA entry into the nucleus. Unlike the related antiviral GTPase MxA, MxB possesses an N-terminal region that contains a nuclear localization signal and is crucial for inhibiting HIV-1. Because MxB previously has been shown to reside in both the nuclear envelope and the cytoplasm, here we used bioinformatics and biochemical approaches to identify a nuclear export signal (NES) responsible for MxB's cytoplasmic location. Using the online computational tool LocNES (Locating Nuclear Export Signals or NESs), we identified five putative NES candidates in MxB and investigated whether their deletion caused nuclear localization of MxB. Our results revealed that none of the five deletion variants relocates to the nucleus, suggesting that these five predicted NES sequences do not confer NES activity. Interestingly, deletion of one sequence, encompassing amino acids 505-527, abrogated the anti-HIV-1 activity of MxB. Further mutation experiments disclosed that amino acids 515-519, and Pro-515 in particular, regulate MxB oligomerization and its binding to HIV-1 capsid, thereby playing an important role in MxB-mediated restriction of HIV-1 infection. In summary, our results indicate that none of the five predicted NES sequences in MxB appears to be required for its nuclear export. Our findings also reveal several residues in MxB, including Pro-515, critical for its oligomerization and anti-HIV-1 function.


Assuntos
Capsídeo/metabolismo , Núcleo Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteínas de Resistência a Myxovirus/metabolismo , Multimerização Proteica , Transporte Ativo do Núcleo Celular , Núcleo Celular/genética , Núcleo Celular/virologia , Células HEK293 , Infecções por HIV/genética , HIV-1/genética , Células HeLa , Humanos , Proteínas de Resistência a Myxovirus/genética , Sinais de Exportação Nuclear , Prolina , Ligação Proteica
14.
J Biol Chem ; 295(5): 1300-1314, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31871052

RESUMO

ß1-chimaerin belongs to the chimaerin family of GTPase-activating proteins (GAPs) and is encoded by the CHN2 gene, which also encodes the ß2- and ß3-chimaerin isoforms. All chimaerin isoforms have a C1 domain that binds diacylglycerol as well as tumor-promoting phorbol esters and a catalytic GAP domain that inactivates the small GTPase Rac. Nuclear Rac has emerged as a key regulator of various cell functions, including cell division, and has a pathological role by promoting tumorigenesis and metastasis. However, how nuclear Rac is regulated has not been fully addressed. Here, using several approaches, including siRNA-mediated gene silencing, confocal microscopy, and subcellular fractionation, we identified a nuclear variant of ß1-chimaerin, ß1-Δ7p-chimaerin, that participates in the regulation of nuclear Rac1. We show that ß1-Δ7p-chimaerin is a truncated variant generated by alternative splicing at a cryptic splice site in exon 7. We found that, unlike other chimaerin isoforms, ß1-Δ7p-chimaerin lacks a functional C1 domain and is not regulated by diacylglycerol. We found that ß1-Δ7p-chimaerin localizes to the nucleus via a nuclear localization signal in its N terminus. We also identified a key nuclear export signal in ß1-chimaerin that is absent in ß1-Δ7p-chimaerin, causing nuclear retention of this truncated variant. Functionally analyses revealed that ß1-Δ7p-chimaerin inactivates nuclear Rac and negatively regulates the cell cycle. Our results provide important insights into the diversity of chimaerin Rac-GAP regulation and function and highlight a potential mechanism of nuclear Rac inactivation that may play significant roles in pathologies such as cancer.


Assuntos
Núcleo Celular/metabolismo , Proteínas Quimerinas/genética , Proteínas Quimerinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Processamento Alternativo , Motivos de Aminoácidos/genética , Animais , Células COS , Ciclo Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Diglicerídeos/metabolismo , Éxons/genética , Inativação Gênica , Humanos , Domínios Proteicos/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno , Deleção de Sequência , Proteínas rac1 de Ligação ao GTP/genética
15.
J Cell Sci ; 132(7)2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962349

RESUMO

Hypoxia-inducible factor 2 (HIF-2) is a principal component of the cellular response to oxygen deprivation (hypoxia). Its inducible subunit, HIF-2α (also known as EPAS1), is controlled by oxygen-dependent as well as oxygen-independent mechanisms, such as phosphorylation. We show here that HIF-2α is phosphorylated under hypoxia (1% O2) by extracellular signal-regulated protein kinases 1 and 2 (ERK1/2; also known as MAPK3 and MAPK1, respectively) at serine residue 672, as identified by in vitro phosphorylation assays. Mutation of this site to an alanine residue or inhibition of the ERK1/2 pathway decreases HIF-2 transcriptional activity and causes HIF-2α to mislocalize to the cytoplasm without changing its protein expression levels. Localization, reporter gene and immunoprecipitation experiments further show that HIF-2α associates with the exportin chromosomal maintenance 1 (CRM1, also known as XPO1) in a phosphorylation-sensitive manner and identify two critical leucine residues as part of an atypical CRM1-dependent nuclear export signal (NES) neighboring serine 672. Inhibition of CRM1 or mutation of these residues restores nuclear accumulation and activity of HIF-2α lacking the ERK1/2-mediated modification. In summary, we reveal a novel regulatory mechanism of HIF-2, involving ERK1/2-dependent phosphorylation of HIF-2α, which controls its nucleocytoplasmic shuttling and the HIF-2 transcriptional activity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Núcleo Celular/genética , Células HeLa , Humanos , Carioferinas/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Mutação , Fosforilação , Receptores Citoplasmáticos e Nucleares/genética , Serina/metabolismo , Proteína Exportina 1
16.
Acta Neuropathol ; 142(2): 361-374, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003336

RESUMO

Loss of nuclear SMARCB1 (INI1/hSNF5/BAF47) protein expression due to biallelic mutations of the SMARCB1 tumor suppressor gene is a hallmark of atypical teratoid/rhabdoid tumors (ATRT), but the presence of cytoplasmic SMARCB1 protein in these tumors has not yet been described. In a series of 102 primary ATRT, distinct cytoplasmic SMARCB1 staining on immunohistochemistry was encountered in 19 cases (19%) and was highly over-represented in cases showing pathogenic sequence variants leading to truncation or mutation of the C-terminal part of SMARCB1 (15/19 vs. 4/83; Chi-square: 56.04, p = 1.0E-10) and, related to this, in tumors of the molecular subgroup ATRT-TYR (16/36 vs. 3/66; Chi-square: 24.47, p = 7.6E-7). Previous reports have indicated that while SMARCB1 lacks a bona fide nuclear localization signal, it harbors a masked nuclear export signal (NES) and that truncation of the C-terminal region results in unmasking of this NES leading to cytoplasmic localization. To determine if cytoplasmic localization found in ATRT is due to unmasking of NES, we generated GFP fusions of one of the SMARCB1 truncating mutations (p.Q318X) found in the tumors along with a p.L266A mutation, which was shown to disrupt the interaction of SMARCB1-NES with exportin-1. We found that while the GFP-SMARCB1(Q318X) mutant localized to the cytoplasm, the double mutant GFP-SMARCB1(Q318X;L266A) localized to the nucleus, confirming NES requirement for cytoplasmic localization. Furthermore, cytoplasmic SMARCB1(Q318X) was unable to cause senescence as determined by morphological observations and by senescence-associated ß-galactosidase assay, while nuclear SMARCB1(Q318X;L266A) mutant regained this function. Selinexor, a selective exportin-1 inhibitor, was effective in inhibiting the nuclear export of SMARCB1(Q318X) and caused rapid cell death in rhabdoid tumor cells. In conclusion, inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1. Therapies aimed at preventing nuclear export of mutant SMARCB1 protein may represent a promising targeted therapy in ATRT harboring truncating C-terminal SMARCB1 mutations.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Neoplasia Residual/genética , Tumor Rabdoide/metabolismo , Proteína SMARCB1/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Pré-Escolar , Feminino , Genes Supressores de Tumor/fisiologia , Humanos , Lactente , Masculino , Mutação/genética , Neoplasia Residual/metabolismo , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/metabolismo , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética
17.
Plant J ; 98(1): 55-70, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552775

RESUMO

The extrahaustorial membrane (EHM) is a host-derived interfacial membrane encasing the haustorium of powdery mildew fungi. Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically targeted to the EHM via two EHM-targeting signals. Here, we demonstrate that proper coordination between the trafficking forces engaged via the EHM-targeting signals and the nuclear localization signals (NLSs), as well as the nuclear export signals (NESs), in RPW8.2 is critical for the activation of cell death and defense. We show that in the absence of pathogens, RPW8.2 is partitioned between the cytoplasm and the nucleus, and turned over via both the 26S proteasome- and the vacuole-dependent pathways. Enhanced cytoplasmic localization of RPW8.2 by tagging it with a NES led to lethal cell death. By contrast, enhanced nuclear localization of RPW8.2 by adding an NLS to it resulted in resistance to powdery mildew. Whereas expression of the NES-containing C-terminal domain of RPW8.2 in the cytoplasm is sufficient to trigger cell death, no such cell death-inducing activity is found with RPW8.2 variants that contain the two EHM-targeting signals along with the NES-containing C-terminal domain. In addition, we present evidence for the involvement of a leaf senescence pathway in RPW8.2-mediated cell death and defense. Taken together, our data suggest that RPW8.2 is subject to adjustment by distinct and perhaps coordinated mechanisms for its localization and function via interaction with the multiple intramolecular trafficking signals, which should provide further insights into RPW8.2-activated, EHM-focused resistance against powdery mildew.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ascomicetos/fisiologia , Resistência à Doença , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Morte Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Reporter , Interações Hospedeiro-Patógeno , Modelos Biológicos , Mutação , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Transporte Proteico
18.
Biochem Biophys Res Commun ; 531(3): 335-340, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32800339

RESUMO

The nuclear export signal (NES) endows a protein nuclear export ability. Surprisingly, our previous study shows that just the NES peptide of Schizosaccharomyces pombe Oxs1 (SpOxs1NES) can confer diamide tolerance by competing with transcription factor Pap1 for nuclear transport. This finding intrigued us to test the function of NESs from heterologous organisms. The Arabidopsis thaliana zinc finger transcription factor OXIDATIVE STRESS 2 (AtOXS2) is a nucleocytoplasmic shuttling protein and nearly all OXS2 members from maize and rice contain an NES. In this study, we find that the plant OXS2 members and their C-terminus (AT3 peptide) can confer diamide tolerance due to their NESs, and amino acids in non-conserved as well as conserved positions are necessary for the diamide tolerance. As in SpOxs1NES, the enhanced tolerance to diamide in fission yeast depends on Pap1. Like SpOxs1NES, OXS2 family NESs appear to compete for nuclear transport of the Pap1-like Arabidopsis protein bZIP10, as when overproduced in Arabidopsis protoplasts, bZIP10 is retained in the nucleus.


Assuntos
Diamida/metabolismo , Sinais de Exportação Nuclear , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Schizosaccharomyces/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Substituição de Aminoácidos , Núcleo Celular/metabolismo , Sequência Conservada , Peptídeos/metabolismo , Frações Subcelulares/metabolismo
19.
J Fish Dis ; 43(7): 791-799, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449196

RESUMO

Koi herpesvirus (KHV) is an emerging pathogen of koi and common carp that causes a severe disease and mass mortality of infected fish. The KHV ORF72 protein is an important capsid protein that has been suggested to be a candidate for the development of diagnostic reagents and KHV vaccines. The purpose of this study was to clone and express the KHV ORF72 gene for further preparation of a specific monoclonal antibody (mAb) and to analyse cellular distribution of the viral protein. The mAb 3E1 could specifically recognize the expressed ORF72 protein of transfected cells by indirect immunofluorescence, and the antigenic site recognized by the mAb 3E1 was mapped to the region of N-terminal 124 residues of KHV ORF72. This mAb was further demonstrated to specifically detect the KHV-infected fish tissue by immunohistochemistry, thereby suggesting its high diagnostic potential. In addition, the cellular distribution analysis of the KHV ORF72 protein revealed that the region of amino acid residues 125-247 was related to mitochondrial localization and proliferation. Furthermore, a putative nuclear export signal (NES) of ORF72 at the residues 201-212 was confirmed on the basis of its function associated with NES activity.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Doenças dos Peixes/imunologia , Infecções por Herpesviridae/veterinária , Herpesviridae/imunologia , Proteínas Virais/isolamento & purificação , Animais , Doenças dos Peixes/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Distribuição Tecidual
20.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882917

RESUMO

The nuclear export receptor CRM1 (XPO1) recognizes and binds specific sequence motifs termed nuclear export signals (NESs) in cargo proteins. About 200 NES motifs have been identified, but over a thousand human proteins are potential CRM1 cargos, and most of their NESs remain to be identified. On the other hand, the interaction of NES peptides with the "NES-binding groove" of CRM1 was studied in detail using structural and biochemical analyses, but a better understanding of CRM1 function requires further investigation of how the results from these in vitro studies translate into actual NES export in a cellular context. Here we show that a simple cellular assay, based on a recently described reporter (SRVB/A), can be applied to identify novel potential NESs motifs, and to obtain relevant information on different aspects of CRM1-mediated NES export. Using cellular assays, we first map 19 new sequence motifs with nuclear export activity in 14 cancer-related proteins that are potential CRM1 cargos. Next, we investigate the effect of mutations in individual NES-binding groove residues, providing further insight into CRM1-mediated NES export. Finally, we extend the search for CRM1-dependent NESs to a recently uncovered, but potentially vast, set of small proteins called micropeptides. By doing so, we report the first NES-harboring human micropeptides.


Assuntos
Genes Reporter , Carioferinas/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Sinais de Exportação Nuclear , Fragmentos de Peptídeos/análise , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Células HeLa , Humanos , Carioferinas/genética , Proteínas de Neoplasias/genética , Neoplasias , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA