Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell Microbiol ; 23(6): e13320, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33600054

RESUMO

Bacterial pathogens can subvert host responses by producing effector proteins that directly target the nucleus of eukaryotic cells in animals and plants. Nuclear-targeting proteins are categorised as either: "nucleomodulins," which have epigenetic-modulating activities; or "cyclomodulins," which specifically interfere with the host cell cycle. Bacteria can deliver these effector proteins to eukaryotic cells via a range of strategies. Despite an increasing number of reports describing the effects of bacterial effector proteins on nuclear processes in host cells, the intracellular pathways used by these proteins to traffic to the nucleus have yet to be fully elucidated. This review will describe current knowledge about how nucleomodulins and cyclomodulins enter eukaryotic cells, exploit endocytic pathways and translocate to the nucleus. We will also discuss the secretion of nuclear-targeting proteins or their release in bacterial membrane vesicles and the trafficking pathways employed by each of these forms. Besides their importance for bacterial pathogenesis, some nuclear-targeting proteins have been implicated in the development of chronic diseases and even cancer. A greater understanding of nuclear-targeting proteins and their actions will provide new insights into the pathogenesis of infectious diseases, as well as contribute to advances in the development of novel therapies against bacterial infections and possibly cancer.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Interações Hospedeiro-Patógeno , Bactérias/química , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Transporte Biológico , Ciclo Celular , Núcleo Celular/microbiologia , Fatores de Virulência/metabolismo
2.
Angew Chem Int Ed Engl ; 61(44): e202210568, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102872

RESUMO

Herein, we show intranuclear nanoribbons formed upon dephosphorylation of leucine-rich L- or D-phosphopeptide catalyzed by alkaline phosphatase (ALP) to selectively kill osteosarcoma cells. Being dephosphorylated by ALP, the peptides are first transformed into micelles and then converted into nanoribbons. The peptides/assemblies first aggregate on cell membranes, then enter cells via endocytosis, and finally accumulate in nuclei (mainly in nucleoli). Proteomics analysis suggests that the assemblies interact with histone proteins. The peptides kill osteosarcoma cells rapidly and are nontoxic to normal cells. Moreover, the repeated stimulation of the osteosarcoma cells by the peptides sensitizes the cancer cells rather than inducing resistance. This work not only illustrates a novel mechanism for nucleus targeting, but may also pave a new way for selectively killing osteosarcoma cells and minimizing drug resistance.


Assuntos
Neoplasias Ósseas , Nanotubos de Carbono , Osteossarcoma , Humanos , Fosfatase Alcalina/metabolismo , Micelas , Fosfopeptídeos/metabolismo , Histonas , Leucina , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico
3.
Angew Chem Int Ed Engl ; 61(15): e202114600, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132748

RESUMO

The nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton. MeTPAE can not only interact with histone deacetylases (HDACs) to inhibit cell proliferation but also damage telomere and nucleic acids precisely through photodynamic treatment (PDT). The cocktail strategy of MeTPAE caused obvious cell cycle arrest and showed excellent PDT anti-tumor activity, which offered new opportunities for the effective treatment of malignant tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Pontos de Checagem do Ciclo Celular , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
4.
J Nanobiotechnology ; 19(1): 140, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001157

RESUMO

Synergistic chemo-photodynamic therapy has garnered attention in the field of cancer treatment. Here, a pH cascade-responsive micellar nanoplatform with nucleus-targeted ability, for effective synergistic chemo-photodynamic cancer treatment, was fabricated. In this micellar nanoplatform, 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (Por), a photodynamic therapy (PDT) agent was utilized for carrying the novel anticancer drug GNA002 to construct a hydrophobic core, and cyclic RGD peptide (cRGD)-modified polyethylene glycol (PEG) (cRGD-PEG) connected the cell-penetrating peptide hexaarginine (R6) through a pH-responsive hydrazone bond (cRGD-PEG-N = CH-R6) to serve as a hydrophilic shell for increasing blood circulation time. After passively accumulating in tumor sites, the self-assembled GNA002-loaded nanoparticles were actively internalized into cancer cells via the cRGD ligands. Once phagocytosed by lysosomes, the acidity-triggered detachment of the cRGD-PEG shell led to the formation of R6-coated secondary nanoparticles and subsequent R6-mediated nucleus-targeted drug delivery. Combined with GNA002-induced nucleus-specific chemotherapy, reactive oxygen species produced by Por under 532-nm laser irradiation achieved a potent synergistic chemo-photodynamic cancer treatment. Moreover, our in vitro and in vivo anticancer investigations revealed high cancer-suppression efficacy of this ideal multifunctional nanoplatform, indicating that it could be a promising candidate for synergistic anticancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lisossomos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Peptídeos Cíclicos , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Espécies Reativas de Oxigênio
5.
J Nanobiotechnology ; 19(1): 347, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715867

RESUMO

BACKGROUND: Colorectal cancer is known to be resistant to immune checkpoint blockade (ICB) therapy. Sonodynamic therapy (SDT) has been reported to improve the efficacy of immunotherapy by inducing immunogenic cell death (ICD) of cancer. However, the SDT efficacy is extremely limited by Nrf2-based natural redox balance regulation pathway in cancer cells in response to the increased contents of reactive oxygen species (ROS). Nuclear-targeting strategy has shown unique advantages in tumor therapy by directly destroying the DNA. Thus it can be seen that Nrf2-siRNA augmented nuclear-targeting SDT could boost ICB therapy against colorectal cancer. RESULTS: The nuclear-targeting delivery system TIR@siRNA (TIR was the abbreviation of assembled TAT-IR780) with great gene carrier capacity and smaller diameter (< 60 nm) was designed to achieve the gene augmented nuclear-targeting SDT facilitating the anti-PD-L1 (programmed cell death-ligand-1) therapy against colorectal cancer. In CT26 cells, TIR@siRNA successfully delivered IR780 (the fluorescent dye used as sonosensitizer) into cell nucleus and Nrf2-siRNA into cytoplasm. Under US (utrasound) irradiation, TIR@siRNA notably increased the cytotoxicity and apoptosis-inducing activity of SDT through down-regulating the Nrf2, directly damaging the DNA, activating mitochondrial apoptotic pathway while remarkably inducing ICD of CT26 cells. In CT26 tumor-bearing mice, TIR@siRNA mediated gene enhanced nuclear-targeting SDT greatly inhibited tumor growth, noticeably increased the T cell infiltration and boosted DPPA-1 peptide-based anti-PD-L1 therapy to ablate the primary CT26 tumors and suppress the intestinal metastases. CONCLUSIONS: All results demonstrate that TIR@siRNA under US irradiation can efficiently inhibit the tumor progression toward colorectal CT26 cancer in vitro and in vivo by its mediated gene augmented nuclear-targeting sonodynamic therapy. Through fully relieving the immunosuppressive microenvironment of colorectal cancer by this treatment, this nanoplatform provides a new synergistic strategy for enhancing the anti-PD-L1 therapy to ablate colorectal cancer and inhibit its metastasis.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Núcleo Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Inibidores de Checkpoint Imunológico , Imunoterapia , Lisossomos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34204001

RESUMO

Radiodynamic therapy (RDT) is a recent extension of conventional photodynamic therapy, in which visible/near infrared light irradiation is replaced by a well-tolerated dose of high-energy X-rays. This enables greater tissue penetration to allow non-invasive treatment of large, deep-seated tumors. We report here the design and testing of a drug delivery system for RDT that is intended to enhance intra- or peri-nuclear localization of the photosensitizer, leading to DNA damage and resulting clonogenic cell kill. This comprises a photosensitizer (Verteporfin, VP) incorporated into poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) that are surface-functionalized with a cell-penetrating HIV trans-activator of transcription (TAT) peptide. In addition to a series of physical and photophysical characterization studies, cytotoxicity tests in pancreatic (PANC-1) cancer cells in vitro under 4 Gy X-ray exposure from a clinical 6 MV linear accelerator (LINAC) showed that TAT targeting of the nanoparticles markedly enhances the effectiveness of RDT treatment, particularly when assessed by a clonogenic, i.e., DNA damage-mediated, cell kill.


Assuntos
Composição de Medicamentos , Produtos do Gene tat/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Verteporfina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , DNA/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Lipídeos de Membrana/metabolismo , Nanopartículas/ultraestrutura , Oxigênio Singlete/metabolismo
7.
Mol Pharm ; 17(7): 2682-2690, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32478520

RESUMO

Graphene-based tumor cell nuclear targeting fluorescent nanoprobes (GTTNs) were synthesized in our laboratory as a kind of nanomaterial and showed good performance for both in vivo and in vitro imaging. GTTNs directly cross the cell membrane and specifically target the tumor cell nucleus via a cell membrane permeability targeting (CMPT) mechanism, which takes advantage of the increased permeability of the tumor cell membranes. GTTNs with a CMPT mechanism achieve high targeting efficiency in tumor tissues. With the tumor cell nucleus-targeting characterization, the GTTN distinguishes tumor cells at the single-cell level and recognizes the tumor tissue interface in a very early stage and shows great potential in clinical applications. Toxicity studies are extremely critical for clinical applications. Therefore, we studied the acute and subacute toxicity of GTTNs using an in vivo method and examined the following experimental indicators: mouse body weight, organ coefficients, serum biochemical parameters, and histological changes. The results showed that there were no significant differences in any indicators between the experimental and control mice. We also used an in vitro method to study the cytotoxicity of GTTNs in GES-1 (gastric epithelial cell) cells. Surprisingly, the results demonstrated over 80% cell viability when the incubation time reached up to 72 h under a 200 mg/L concentration of GTTNs, which indicated that GTTNs had low cytotoxicity. GTTNs barely showed any acute or subacute toxicity or cytotoxicity in vivo and in vitro, respectively, which supports their use for clinical applications.


Assuntos
Núcleo Celular/efeitos dos fármacos , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/toxicidade , Grafite/química , Nanoestruturas/toxicidade , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Permeabilidade da Membrana Celular , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Corantes Fluorescentes/química , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Coração/fisiologia , Rim/diagnóstico por imagem , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nanoestruturas/química , Imagem Óptica , Baço/diagnóstico por imagem , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia
8.
Anal Bioanal Chem ; 411(5): 967-972, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30604036

RESUMO

Carbon dots (Cdots) with bright green fluorescence were applied to the rapid and selective cell imaging for a variety of cell lines. Different labeling distributions of hepatoma cells (HepG2) and normal human liver cells (LO2) were achieved using Cdots as imaging agents. For HepG2 cells, the Cdots could rapidly permeate the cell membrane and diffuse into the cytoplasm and nucleus within 3 min, and retained their location in the targets for 24 h. However, the Cdots exhibited bright fluorescence only in the cytoplasm of LO2 cell lines. Moreover, the Cdots were almost non-cytotoxic and exhibited superior photostability over a wide range of pH. Therefore, these Cdots have great potential for rapid, luminous and selective bioimaging applications, and are expected to be used as a nucleus-staining agent in cancer diagnosis. Graphical abstract ᅟ.


Assuntos
Carbono/química , Carcinoma Hepatocelular/diagnóstico por imagem , Corantes Fluorescentes/química , Neoplasias Hepáticas/diagnóstico por imagem , Nanopartículas/química , Imagem Óptica/métodos , Pontos Quânticos/química , Linhagem Celular , Células Hep G2 , Humanos , Modelos Moleculares , Imagem Óptica/economia , Pontos Quânticos/ultraestrutura , Fatores de Tempo
9.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509978

RESUMO

Tumorous metastasis is a difficult challenge to resolve for researchers and for clinicians. Targeted delivery of antitumor drugs towards tumor cells' nuclei can be a practical approach to resolving this issue. This work describes an efficient nuclear-targeting delivery system prepared from trans-activating transcriptional activator (TAT) peptide-functionalized graphene nanocarriers. The TAT peptide, originally observed in a human immunodeficiency virus 1 (HIV-1), was incorporated with graphene via an edge-functionalized ball-milling method developed by the author's research group. High tumor-targeting capability of the resulting nanocarrier was realized by the strong affinity between TAT and the nuclei of cancer cells, along with the enhanced permeability and retention (EPR) effect of two-dimensional graphene nanosheets. Subsequently, a common antitumor drug, mitomycin C (MMC), was covalently linked to the TAT-functionalized graphene (TG) to form a nuclear-targeted nanodrug MMC-TG. The presence of nanomaterials inside the nuclei of ocular choroidal melanoma (OCM-1) cells was shown using transmission electron microscopy (TEM) and confocal laser scanning microscopy. In vitro results from a Transwell co-culture system showed that most of the MMC-TG nanodrugs were delivered in a targeted manner to the tumorous OCM-1 cells, while a very small amount of MMC-TG was delivered in a non-targeted manner to normal human retinal pigment epithelial (ARPE-19) cells. TEM results further confirmed that apoptosis of OCM-1 cells was started from the lysis of nuclear substances, followed by the disappearance of nuclear membrane and cytoplasm. This suggests that the as-synthesized MMC-TG is a promising nuclear-target nanodrugfor resolution of tumorous metastasis issues at the headstream.


Assuntos
Neoplasias da Coroide/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Grafite/química , Melanoma/tratamento farmacológico , Mitomicina/administração & dosagem , Peptídeos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Neoplasias da Coroide/metabolismo , Neoplasias da Coroide/patologia , Portadores de Fármacos/química , Humanos , Melanoma/metabolismo , Melanoma/patologia , Microscopia Eletrônica de Transmissão , Mitomicina/química , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
10.
Small ; 13(10)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28026123

RESUMO

Emerging evidence indicates that long noncoding RNAs (lncRNAs) are actively involved in a number of developmental and tumorigenic processes. Here, the authors describe the first successful use of spherical nucleic acids as an effective nanoparticle platform for regulating lncRNAs in cells; specifically, for the targeted knockdown of the nuclear-retained metastasis associated lung adenocarcinoma transcript 1 (Malat1), a key oncogenic lncRNA involved in metastasis of several cancers. Utilizing the liposomal spherical nucleic acid (LSNA) constructs, the authors first explored the delivery of antisense oligonucleotides to the nucleus. A dose-dependent inhibition of Malat1 upon LSNA treatment as well as the consequent up-regulation of tumor suppressor messenger RNA associated with Malat1 knockdown are shown. These findings reveal the biologic and therapeutic potential of a LSNA-based antisense strategy in targeting disease-associated, nuclear-retained lncRNAs.


Assuntos
Lipossomos/metabolismo , Ácidos Nucleicos/metabolismo , Células A549 , Núcleo Celular , Humanos , Oligonucleotídeos Fosforotioatos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
FEMS Yeast Res ; 15(7)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26347503

RESUMO

Nuclear localization sequences (NLSs) are required for the import of proteins in the nucleus of eukaryotes. However many proteins from bacteria or bacteriophages are used for basic studies in molecular biology, to generate synthetic genetic circuits or for genome editing applications. Prokaryotic recombinases, CRISPR-associated proteins such as Cas9 or bacterial and viral polymerases require efficient NLSs to function in eukaryotes. The yeast Pichia pastoris is a widely used expression platform for heterologous protein production, but molecular tools such as NLSs are limited. Here we have characterized a set of 10 NLSs for P. pastoris, including the first endogenous NLSs (derived from P. pastoris proteins) and commonly used heterologous NLSs. The NLSs were evaluated by fusing them in N- and C-terminal position to an enhanced green fluorescent protein showing pronounced differences in fluorescence levels and nuclear targeting. Thereby we provide a set of different NLSs that can be applied to optimize the nuclear import of heterologous proteins in P. pastoris, paving the way for the establishment of intricate synthetic biology applications.


Assuntos
Proteínas Fúngicas/genética , Sinais de Localização Nuclear , Pichia/genética , Engenharia de Proteínas/métodos , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética
12.
Mol Pharm ; 12(12): 4277-89, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26465978

RESUMO

Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.


Assuntos
Núcleo Celular/metabolismo , Quitosana/química , Nanopartículas/química , Sinais de Localização Nuclear/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Endossomos/metabolismo , Camundongos , Nanopartículas/administração & dosagem , Sinais de Localização Nuclear/administração & dosagem , Tamanho da Partícula
13.
J Mol Recognit ; 27(9): 549-58, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042709

RESUMO

Intrabodies, when expressed in cells after genetic fusion to fluorescent proteins, are powerful tools to study endogenous protein dynamics inside cells. However, it remains challenging to determine the conditions for specific imaging and precise labelling of the target antigen with such intracellularly expressed antibody fragments. Here, we show that single-chain Fv (scFv) antibody fragments can be generated that specifically recognize proliferating cell nuclear antigen (PCNA) when expressed in living cancer cells. After selection by phage display, the anti-PCNA scFvs were screened in vitro after being tagged with dimeric glutathione-S-transferase. Anti-PCNA scFvs of increased avidity were further engineered by mutagenesis with sodium bisulfite and error-prone PCR, such that they were almost equivalent to conventional antibodies in in vitro assays. These intrabodies were then rendered bifunctional by fusion to a C-terminal fragment of p21 protein and could thereby readily detect PCNA bound to chromatin in cells. Finally, by linking these optimized peptide-conjugated scFvs to an enhanced green fluorescent protein, fluorescent intrabody-based reagents were obtained that allowed the fate of PCNA in living cells to be examined. The approach described may be applicable to other scFvs that can be solubly expressed in cells, and it provides a unique means to recognize endogenous proteins in living cells with high accuracy.


Assuntos
Diagnóstico por Imagem , Neoplasias/diagnóstico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sequência de Aminoácidos , Afinidade de Anticorpos , Linhagem Celular Tumoral , Sobrevivência Celular , Fluorescência , Humanos , Indicadores e Reagentes , Dados de Sequência Molecular , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Frações Subcelulares/metabolismo
14.
J Colloid Interface Sci ; 664: 338-348, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479270

RESUMO

Combination therapies demand co-delivery platforms with efficient entrapment of distinct payloads and specific delivery to cells and possibly organelles. Herein, we introduce the combination of two therapeutic modalities, gene and photodynamic therapy, in a purely peptidic platform. The simultaneous formation and cargo loading of the multi-micellar platform is governed by self-assembly at the nanoscale. The multi-micellar architecture of the nanocarrier and the positive charge of its constituent micelles offer controlled dual loading capacity with distinct locations for a hydrophobic photosensitizer (PS) and negatively charged antisense oligonucleotides (ASOs). Moreover, the nuclear localization signal (NLS) sequence built-in the peptide targets PS + ASO-loaded nanocarriers to the nucleus. Breast cancer cells treated with nanocarriers demonstrated photo-triggered enhancement of radical oxygen species (ROS) associated with increased cell death. Besides, delivery of ASO payloads resulted in up to 90 % knockdown of Bcl-2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. Simultaneous delivery of PS and ASO elicited synergistic apoptosis to an extent that could not be reached by singly loaded nanocarriers or the free form of the drugs. Both, the distinct location of loaded compounds that prevents them from interfering with each other, and the highly efficient cellular delivery support the great potential of this versatile peptide platform in combination therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Neoplasias/tratamento farmacológico , Apoptose , Micelas , Linhagem Celular Tumoral
15.
J Control Release ; 369: 531-544, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580138

RESUMO

Stimulator of the interferon genes (STING) pathway is appealing but challenging to potentiate the innate anti-tumor immunity. In this work, nuclear-targeted chimeric peptide nanorods (designated as PFPD) are constructed to amplify innate immunity through localized DNA damage and STING activation. Among which, the chimeric peptide (PpIX-FFVLKPKKKRKV) is fabricated with photosensitizer and nucleus targeting peptide sequence, which can self-assemble into nanorods and load STING agonist of DMXAA. The uniform nanosize distribution and good stability of PFPD improve the sequential targeting delivery of drugs towards tumor cells and nuclei. Under light irradiation, PFPD produce a large amount of reactive oxygen species (ROS) to destroy nuclear DNA in situ, and the released cytosolic DNA fragment will efficiently activate innate anti-tumor immunity in combination with STING agonist. In vitro and in vivo results indicate the superior ability of PFPD to activate natural killer cells and T cells, thus efficiently eradicating lung metastatic tumor without inducing unwanted side effects. This work provides a sophisticated strategy for localized activation of innate immunity for systemic tumor treatment, which may inspire the rational design of nanomedicine for tumor precision therapy.


Assuntos
Dano ao DNA , Imunidade Inata , Proteínas de Membrana , Animais , Imunidade Inata/efeitos dos fármacos , Humanos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Núcleo Celular/metabolismo , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Nanotubos de Peptídeos/química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Feminino , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/química
16.
Adv Drug Deliv Rev ; 211: 115354, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857762

RESUMO

One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.


Assuntos
Núcleo Celular , Humanos , Núcleo Celular/metabolismo , Animais , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Peptídeos/química , Peptídeos/administração & dosagem , Polímeros/química , Transporte Ativo do Núcleo Celular , Portadores de Fármacos/química , Sinais de Localização Nuclear
17.
ACS Nano ; 18(20): 12870-12884, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727063

RESUMO

Epirubicin (EPI) alone can trigger mildly protective autophagy in residual tumor cells, resulting in an immunosuppressive microenvironment. This accelerates the recurrence of residual tumors and leads to antiprogrammed death ligand 1 (anti-PD-1)/PD-L1 therapy resistance, posing a significant clinical challenge in tumor immunotherapy. The combination of checkpoint inhibitors targeting the PD-1/PD-L1 pathway and amplifying autophagy presents an innovative approach to tumor treatment, which can prevent tumor immune escape and enhance therapeutic recognition. Herein, we aimed to synthesize a redox-triggered autophagy-induced nanoplatform with SA&EA-induced PD-L1 inhibition. The hyaluronic acid (HA) skeleton and arginine segment promoted active nanoplatform targeting, cell uptake, and penetration. The PLGLAG peptide was cleaved by overexpressing matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, and the PD-L1 inhibitor D-PPA was released to inhibit tumor immune escape. The intense autophagy inducers, STF-62247 and EPI, were released owing to the cleavage of disulfide bonds influenced by the high glutathione (GSH) concentration in tumor cells. The combination of EPI and STF induced apoptosis and autophagic cell death, effectively eliminating a majority of tumor cells. This indicated that the SA&EA nanoplatform has better therapeutic efficacy than the single STF@AHMPP and EPI@AHMPTP groups. This research provided a way to set up a redox-triggered autophagy-induced nanoplatform with PD-L1 inhibition to enhance chemo-immunotherapy.


Assuntos
Autofagia , Antígeno B7-H1 , Imunoterapia , Nanopartículas , Animais , Humanos , Camundongos , Autofagia/efeitos dos fármacos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Nanopartículas/química , Oxirredução , Microambiente Tumoral/efeitos dos fármacos
18.
Adv Healthc Mater ; 12(31): e2301517, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689990

RESUMO

Photodynamic therapy is a promising cancer therapeutic method that can damage DNA via photoinduced reactive oxygen species production. However, tumor cells can initiate DNA repair pathways to resist oxidative damage. In this study, a nuclear-targeted photosensitizer PARP-PS with a poly (ADP-ribose) polymerase 1 (PARP1) inhibitory effect is developed based on the reported PARP1 inhibitor, rucaparib. As a dual-mode DNA-damaging agent, PARP-PS damages DNA upon photoirradiation and enhances oxidative DNA damage by blocking the DNA repair pathway via PARP1 inhibition and degradation. Both in vitro and in vivo investigations demonstrate that PARP-PS exhibits high antitumor activity with few side effects in breast cancer. In addition, PARP-PS can act as an immunogenic cell death inducer to activate immune responses characterized by the promotion of cytotoxic T lymphocyte activation and tumor infiltration. Therefore, PARP-PS is a potential multimodal antitumor agent with synergistic phototherapeutic, chemotherapeutic, and immunotherapeutic effects.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Dano ao DNA , Neoplasias da Mama/tratamento farmacológico , DNA , Linhagem Celular Tumoral , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética
19.
Mol Plant Pathol ; 24(9): 1093-1106, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306516

RESUMO

Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases and poses a growing threat to food security worldwide. Like many other filamentous pathogens, rice blast fungus releases multiple types of effector proteins to facilitate fungal infection and modulate host defence responses. However, most of the characterized effectors contain an N-terminal signal peptide. Here, we report the results of the functional characterization of a nonclassically secreted nuclear targeting effector in M. oryzae (MoNte1). MoNte1 has no signal peptide, but can be secreted and translocated into plant nuclei driven by a nuclear targeting peptide. It could also induce hypersensitive cell death when transiently expressed in Nicotiana benthamiana. Deletion of the MoNTE1 gene caused a significant reduction of fungal growth and conidiogenesis, partially impaired appressorium formation and host colonization, and also dramatically attenuated the pathogenicity. Taken together, these findings reveal a novel effector secretion pathway and deepen our understanding of rice-M. oryzae interactions.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Ascomicetos/metabolismo , Núcleo Celular/metabolismo , Transporte Biológico , Sinais Direcionadores de Proteínas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo
20.
Cell Rep ; 42(2): 112130, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790931

RESUMO

RHO guanosine triphosphatases are important eukaryotic regulators of cell differentiation and behavior. Plant ROP (RHO of plant) family members activate specific, incompletely characterized downstream signaling. The structurally simple land plant Physcomitrium patens is missing homologs of key animal and flowering plant RHO effectors but contains a single CRIB (CDC42/RAC interactive binding)-domain-containing RIC (ROP-interacting CRIB-containing) protein (PpRIC). Protonemal P. patens filaments elongate based on regular division and PpROP-dependent tip growth of apical initial cells, which upon stimulation by the hormone auxin differentiate caulonemal characteristics. PpRIC interacts with active PpROP1, co-localizes with this protein at the plasma membrane at the tip of apical initial cells, and accumulates in the nucleus. Remarkably, PpRIC is not required for tip growth but is targeted to the nucleus to block caulonema differentiation downstream of auxin-controlled gene expression. These observations establish functions of PpRIC in mediating crosstalk between ROP and auxin signaling, which contributes to the maintenance of apical initial cell identity.


Assuntos
Ácidos Indolacéticos , Transdução de Sinais , Animais , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Plantas , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA