Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biol Int ; 45(5): 1091-1097, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33501699

RESUMO

Small nucleolar RNAs (snoRNAs) are thought to be exclusively nuclear and guide nucleotide modifications of ribosomal RNAs. Recently, more and more evidence has suggested that the nucleolus is a stress sensor for changes in growth status and that snoRNAs may orchestrate the response to environmental stress through molecular interactions outside of the nucleus. We previously showed that a box C/D snoRNA Bm-15 had both nuclear and cytoplasmic location in BmN4 cell line of the silkworm, Bombyx mori. To further study the functional roles of Bm-15, changes in expression level and cellular location of Bm-15 were examined in BmN4 cells subjected to serum starvation and ultraviolet (UV) ray radiation. Results indicated that total RNA level of Bm-15 was unchanged after 24 h serum starvation, but exhibited 3-fold increases in the cytoplasm, and the nuclear-to-cytosolic distribution ratio was reduced from 5:1 to 2:1. Moreover, UV radiation also causes rapid decline in nuclear Bm-15 and progressive cytoplasmic accumulation with a percentage of 22% and 57% after 6 and 24 h UV radiation. UV treatment results in a dramatic decrease in Bm-15 nuclear-to-cytosolic ratio from 7:1 to 2:1 and 2:1 to 1:20 after 6 and 24 h UV radiation, respectively. We show here for the first time that box C/D snoRNAs can translocate from the nucleus to the cytoplasm under the abiotic stress of nutritional deficiency and UV radiation. The rapid translocation of snoRNAs from nucleus to cytoplasm may slow down the maturation of rRNAs and synthesis of ribosomes to enhance the stress resistance of cells.


Assuntos
Bombyx/genética , RNA Nucleolar Pequeno/metabolismo , Estresse Fisiológico/genética , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Bombyx/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , RNA Nucleolar Pequeno/genética , Estresse Fisiológico/fisiologia
2.
Apoptosis ; 24(7-8): 552-561, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30911960

RESUMO

More and more studies reported that diverse biological roles of long noncoding RNAs were usually dependent on their subcellular location. In our previous study, long noncoding RNA CERNA1 was identified both located in cytoplasm and nucleus of vascular endothelial cells (VECs). And CERNA1 in cytoplasm, which functioned as competitive endogenous RNA (ceRNA), alleviated the apoptosis of VECs. However, the function of CERNA1 in nucleus was still unclear. In this study, we found that nuclear CERNA1 positively regulated BCL2L10, which accelerated the serum and FGF-2 starvation-induced apoptosis of VECs, by enhancing the histone modification level of H3K9ac and H3K4me3 in BCL2L10 promoter region. Furthermore, due to the paradoxical function, we investigated the variation of CERNA1 subcellular location in VECs. The results showed that, as the change of apoptosis status, CERNA1 altered the cellular distribution in VECs. And the annexin A7 inhibitor, ABO (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine), not only increased the expression of CERNA1 by TIA-1, but also specifically improved its cytoplasm distribution proportion so as to inhibit the apoptosis of VECs. This evidence suggested that the subcellular location of CERNA1 played an important role in the VECs apoptosis and ABO might be a potential chemical molecule for therapy of VECs apoptosis related cardiovascular diseases.


Assuntos
Anexina A7/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Benzoxazinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , RNA Longo não Codificante/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Código das Histonas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA