Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Mol Cell ; 66(1): 63-76.e6, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366641

RESUMO

Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Transcrição Gênica , Ativação Transcricional , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Linhagem Celular , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Ecdisona/farmacologia , Genótipo , Elementos Isolantes , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fenótipo , Ligação Proteica , Interferência de RNA , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Transfecção
2.
Genes Dev ; 31(22): 2201-2203, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29284709

RESUMO

Nuclear pore proteins (Nups) interact with chromosomes to regulate gene expression and chromatin structure. A new study by Franks and colleagues (pp. 2222-2234) provides new mechanistic insight into the molecular basis by which Nup98 promotes gene activation in normal hematopoietic cells and how that process is altered by translocations to cause excess expression of developmental genes in leukemia.


Assuntos
Histonas/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Homeodomínio/genética , Leucemia/genética , Metilação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Translocação Genética
3.
Genes Dev ; 31(22): 2222-2234, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29269482

RESUMO

Recent studies have shown that a subset of nucleoporins (Nups) can detach from the nuclear pore complex and move into the nuclear interior to regulate transcription. One such dynamic Nup, called Nup98, has been implicated in gene activation in healthy cells and has been shown to drive leukemogenesis when mutated in patients with acute myeloid leukemia (AML). Here we show that in hematopoietic cells, Nup98 binds predominantly to transcription start sites to recruit the Wdr82-Set1A/COMPASS (complex of proteins associated with Set1) complex, which is required for deposition of the histone 3 Lys4 trimethyl (H3K4me3)-activating mark. Depletion of Nup98 or Wdr82 abolishes Set1A recruitment to chromatin and subsequently ablates H3K4me3 at adjacent promoters. Furthermore, expression of a Nup98 fusion protein implicated in aggressive AML causes mislocalization of H3K4me3 at abnormal regions and up-regulation of associated genes. Our findings establish a function of Nup98 in hematopoietic gene activation and provide mechanistic insight into which Nup98 leukemic fusion proteins promote AML.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Animais , Células Cultivadas , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Metilação , Camundongos
4.
J Cell Biochem ; 125(7): e30573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780165

RESUMO

Nucleocytoplasmic transport of macromolecules is essential in eukaryotic cells. In this process, the karyopherins play a central role when they transport cargoes across the nuclear pore complex. Importin 4 belongs to the karyopherin ß family. Many studies have focused on finding substrates for importin 4, but no direct mechanism studies of its precise transport function have been reported. Therefore, this paper mainly aimed to study the mechanism of nucleoporins in mediating nuclear import and export of importin 4. To address this question, we constructed shRNAs targeting Nup358, Nup153, Nup98, and Nup50. We found that depletion of Nup98 resulted in a shift in the subcellular localization of importin 4 from the cytoplasm to the nucleus. Mutational analysis demonstrated that Nup98 physically and functionally interacts with importin 4 through its N-terminal phenylalanine-glycine (FG) repeat region. Mutation of nine of these FG motifs to SG motifs significantly attenuated the binding of Nup98 to importin 4, and we further confirmed the essential role of the six FG motifs in amino acids 121-360 of Nup98 in binding with importin 4. In vitro transport assay also confirmed that VDR, the substrate of importin 4, could not be transported into the nucleus after Nup98 knockdown. Overall, our results showed that Nup98 is required for efficient importin 4-mediated transport. This is the first study to reveal the mechanism of importin 4 in transporting substrates into the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares , beta Carioferinas , Humanos , beta Carioferinas/metabolismo , beta Carioferinas/genética , Núcleo Celular/metabolismo , Células HeLa , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica
5.
BMC Cancer ; 24(1): 955, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103751

RESUMO

BACKGROUND: For myeloid neoplasms with t(7;11)(p15;p15) translocation, the prognosis is quite dismal. Because these tumors are rare, most occurrences are reported as single cases. Clinical results and optimal treatment approaches remain elusive. This study endeavors to elucidate the clinical implications and prognosis of this cytogenetic aberration. METHODS: This study retrospectively analyzed 23 cases of myeloid neoplasm with t(7;11)(p15;p15). Clinicopathological characteristics, genetic alterations, and outcomes were evaluated, and the Kaplan-Meier method was employed to construct survival curves. RESULTS: Of these, nine cases were newly diagnosed acute myeloid leukemia (ND AML), seven presented with relapsed refractory AML (R/R AML), four had myelodysplastic syndrome (MDS), two had secondary AML, and one exhibited a mixed germinoma associated with MDS. Patients with t(7;11)(p15;p15) in AML were primarily younger females who preferred subtype M2. Interestingly, these patients had decreased hemoglobin and red blood cell counts, along with markedly elevated levels of lactic dehydrogenase and interleukin-6, and exhibited the expression of CD117. R/R AML patients exhibited a higher likelihood of additional chromosome abnormalities (ACAs) besides t(7;11). WT1 and FLT3-ITD were the most commonly found mutated genes, and 10 of those instances showed evidence of the NUP98::HOXA9 fusion gene. The composite complete remission rate was 66.7% (12/18), while the cumulative graft survival rate was 100% (4/4). However, the survival outcomes were dismal. Interestingly, the median overall survival for R/R AML patients was 4.0 months (95% CI: 1.7-6.4). Additionally, the type of AML diagnosis or the presence of ACAs or molecular prognostic stratification did not significantly influence clinical outcomes (p = 0.066, p = 0.585, p = 0.570, respectively). CONCLUSION: Myeloid leukemia with t(7;11) exhibits unique clinical features, cytogenetic properties, and molecular genetic characteristics. These survival outcomes were dismal. R/R AML patients have a limited lifespan. For myeloid patients with t(7;11), targeted therapy or transplantation may be an effective course of treatment.


Assuntos
Cromossomos Humanos Par 11 , Translocação Genética , Humanos , Feminino , Masculino , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Prognóstico , Cromossomos Humanos Par 11/genética , Adulto Jovem , Idoso , Adolescente , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Cromossomos Humanos Par 7/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/terapia
6.
BMC Pediatr ; 24(1): 483, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068406

RESUMO

During the treatment of 89 pediatric patients with Acute Myeloid Leukemia (AML) at the Hematology Department of Kunming Medical University's Children's Hospital from 2020 to 2023, three patients were identified to co-express the NUP98-NSD1, FLT3-ITD, and WT1 gene mutations. The bone marrow of these three patients was screened for high-risk genetic mutations using NGS and qPCR at the time of diagnosis. The treatment was administered following the China Children's Leukemia Group (CCLG)-AML-2019 protocol. All three patients exhibited a fusion of the NUP98 exon 12 with the NSD1 exon 6 and co-expressed the FLT3-ITD and WT1 mutations; two of the patients displayed normal karyotypes, while one presented chromosomal abnormalities. During the induction phase of the CCLG-AML-2019 treatment protocol, the DAH (Daunorubicin, Cytarabine, and Homoharringtonine) and IAH (Idarubicin, Cytarabine, and Homoharringtonine) regimens, in conjunction with targeted drug therapy, did not achieve remission. Subsequently, the patients were shifted to the relapsed/refractory chemotherapy regimen C + HAG (Cladribine, Homoharringtonine, Cytarabine, and G-CSF) for two cycles, which also failed to induce remission. One patient underwent Haploidentical Hematopoietic Stem Cell Transplantation (Haplo-HSCT) and achieved complete molecular remission during a 12-month follow-up period. Regrettably, the other two patients, who did not receive transplantation, passed away. The therapeutic conclusion is that pediatric AML patients with the aforementioned co-expression do not respond to chemotherapy. Non-remission transplantation, supplemented with tailor-made pre- and post-transplant strategies, may enhance treatment outcomes.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Proteínas WT1 , Tirosina Quinase 3 Semelhante a fms , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Tirosina Quinase 3 Semelhante a fms/genética , Masculino , Feminino , Criança , Proteínas de Fusão Oncogênica/genética , Proteínas WT1/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pré-Escolar , Citarabina/uso terapêutico , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Transplante de Células-Tronco Hematopoéticas , Mepesuccinato de Omacetaxina/uso terapêutico , Lactente
7.
BMC Pediatr ; 24(1): 547, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182032

RESUMO

OBJECTIVE: Patients who carry NUP98::NSD1 or FLT3/ITD mutations are reported to have poor prognosis. Previous studies have confidently reported that the poor outcome in younger AML patients is owning to dual NUP98::NSD1 and FLT3/ITD positivity, with a high overlap for those two genetic lesions. In this study, we assessed the prognostic value of the presence of both NUP98::NSD1 and FLT3/ITD in pediatric AML patients. METHODS: We screened a large cohort of 885 pediatric cases from the COG-National Cancer Institute (NCI) TARGET AML cohort and found 57 AML patients with NUP98 rearrangements. RESULTS: The frequency of NUP98 gene fusion was 10.8% in 529 patients. NUP98::NSD1 fusion was the most common NUP98 rearrangement, with a frequency of 59.6%(34 of 57). NUP98::NSD1 -positive patients who carried FLT3/ITD mutations had a decreased CR1 or CR2 rate than those patients carried FLT3/ITD mutation alone (P = 0.0001). Moreover, patients harboring both NUP98::NSD1 fusion and FLT3/ITD mutation exhibited inferior event-free survival (EFS, P < 0.001) and overall survival (OS, P = 0.004) than patients who were dual negative for these two genetic lesions. The presence of only NUP98::NSD1 fusion had no significant impact on EFS or OS. We also found that cases with high FLT3/ITD AR levels ( > = 0.5) with or without NUP98::NSD1 had inferior prognosis. Multivariate analysis demonstrated that the presence of both NUP98::NSD1 and FLT3/ITD was an independent prognostic factors for EFS (hazard ratio: 3.2, P = 0.001) in patients with pediatric AML. However, there was no obvious correlation with OS (hazard ratio: 1.3, P = 0.618). Stem cell transplantation did not improve the survival rate of cases with NUP98 fusion or NUP98::NSD1 AML in terms of EFS or OS. CONCLUSION: Presence of both NUP98::NSD1 and FLT3/ITD was found to be an independent factor for dismal prognosis in pediatric AML patients. Notably, lack of FLT3/ITD mutations in NUP98::NSD1 -positive patients did not retain its prognostic value.


Assuntos
Leucemia Mieloide Aguda , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Criança , Feminino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Masculino , Prognóstico , Pré-Escolar , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Adolescente , Lactente , Proteínas de Fusão Oncogênica/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
8.
Genes Dev ; 30(10): 1155-71, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27198230

RESUMO

Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo-cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for "soluble Pom121") that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Éxons/genética , Células HeLa , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Sinais de Localização Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Solubilidade , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
9.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273335

RESUMO

This review starts off with the first germline homozygous variants of the Nucleoporin 98 gene (NUP98) in siblings whose clinical presentation recalls Rothmund-Thomson (RTS) and Werner (WS) syndromes. The progeroid phenotype caused by a gene associated with haematological malignancies and neurodegenerative disorders primed the search for interplay between caretakers involved in genome instability syndromes and Nuclear Pore Complex (NPC) components. In the context of basic information on NPC architecture and functions, we discuss the studies on the interdependence of caretakers and gatekeepers in WS and Hereditary Fibrosing Poikiloderma (POIKTMP), both entering in differential diagnosis with RTS. In WS, the WRN/WRNIP complex interacts with nucleoporins of the Y-complex and NDC1 altering NPC architecture. In POIKTMP, the mutated FAM111B, recruited by the Y-complex's SEC13 and NUP96, interacts with several Nups safeguarding NPC structure. The linkage of both defective caretakers to the NPC highlights the attempt to activate a repair hub at the nuclear periphery to restore the DNA damage. The two separate WS and POIKTMP syndromes are drawn close by the interaction of their damage sensors with the NPC and by the shared hallmark of short fragile telomeres disclosing a major role of both caretakers in telomere maintenance.


Assuntos
Instabilidade Genômica , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Humanos , Poro Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais
10.
Eur J Haematol ; 111(4): 620-627, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37465857

RESUMO

OBJECTIVES: The cryptic fusion oncogene NUP98::NSD1 is known to be associated with FLT3-ITD mutation in acute myeloid leukemia (AML), and an independent poor prognostic factor in pediatric AML. However, there are little data regarding the clinical significance of NUP98::NSD1 in adult cohort. METHODS: We conducted a multicenter retrospective study to investigate the prevalence, clinical characteristics, and prognostic impact of NUP98::NSD1 in adult FLT3-ITD-positive AML patients. RESULTS: In a total of 97 FLT3-ITD-positive AML patients, six cases (6.2%) were found to harbor the NUP98::NSD1 fusion transcript. NUP98::NSD1 positive cases had significantly higher platelet counts and a higher frequency of FAB-M4 morphology than NUP98::NSD1 negative cases. NUP98::NSD1 was found to be mutually exclusive with NPM1 mutation, and was accompanied by the WT1 mutation in three of the six cases. The presence of NUP98::NSD1 fusion at the time of diagnosis predicted poor response to cytarabine-anthracycline-based intensive induction chemotherapy (induction failure rate: 83% vs. 36%, p = .038). Five of the six cases with NUP98::NSD1 underwent allogeneic hematopoietic stem cell transplantation (HSCT). Two of the five cases have successfully maintained remission, with one of them being rescued through a second HSCT. CONCLUSIONS: Detecting NUP98::NSD1 in adult FLT3-ITD-positive AML is crucial to recognizing chemotherapy-resistant group.


Assuntos
Leucemia Mieloide Aguda , Criança , Humanos , Adulto , Estudos Retrospectivos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Prognóstico , Mutação , Tirosina Quinase 3 Semelhante a fms/genética , Histona-Lisina N-Metiltransferase/genética
11.
Pediatr Blood Cancer ; 70(5): e30251, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36789545

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) with megakaryocytic differentiation (AMkL) is a rare subtype of AML more common in children. Recent literature has identified multiple fusions associated with this type of leukemia. METHODS: Morphology, cytogenetics, and genomic sequencing were assessed in patients from Children's Oncology Group trials AAML0531 and AAML1031 with central-pathology review confirmed non-Down syndrome AMkL. The 5-year event-free survival (EFS), overall survival (OS), and RR were evaluated in these AMkL subcategories. RESULTS: A total of 107 cases of AMkL (5.5%) were included. Distinct fusions were identified in the majority: RBM15::MRTFA (20%), CBFA2T3::GLIS2 (16%), NUP98 (10%), KMT2A (7%), TEC::MLLT10 (2%), MECOM (1%), and FUS::ERG (1%); many of the remaining cases were classified as AMkL with (other) myelodysplasia-related changes (MRC). Very few cases had AML-associated somatic mutations. Cases with CBFA2T3::GLIS2 were enriched in trisomy 3 (p = .015) and the RAM phenotype, with associated high CD56 expression (p < .001). Cases with NUP98 fusions were enriched in trisomy 6 (p < .001), monosomy 13/del(13q) (p < .001), trisomy 21 (p = .026), and/or complex karyotypes (p = .026). While different 5-year EFS and OS were observed in AMkL in each trial, in general, those with CBFA2T3::GLIS2 or KMT2A rearrangements had worse outcomes compared to other AMkL, while those with RBM15::MRTFA or classified as AMkl-MRC fared better. AMkL with NUP98 fusions also had poor outcomes in the AAML1031 trial. CONCLUSION: Given the differences in outcomes, AMkL classification by fusions, cytogenetics, and morphology may be warranted to help in risk stratification and therapeutic options.


Assuntos
Leucemia Mieloide Aguda , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Análise Citogenética , Intervalo Livre de Doença , Síndrome de Down/genética , Fusão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Taxa de Mutação
12.
Proc Natl Acad Sci U S A ; 117(45): 28344-28354, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097660

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.


Assuntos
COVID-19/metabolismo , Interferons/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Transdução de Sinais , Células Vero
13.
Proc Natl Acad Sci U S A ; 117(43): 26719-26727, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33033226

RESUMO

Viruses employ multiple strategies to inhibit host mRNA nuclear export. Distinct to the generally nonselective inhibition mechanisms, ORF10 from gammaherpesviruses inhibits mRNA export in a transcript-selective manner by interacting with Rae1 (RNA export 1) and Nup98 (nucleoporin 98). We now report the structure of ORF10 from MHV-68 (murine gammaherpesvirus 68) bound to the Rae1-Nup98 heterodimer, thereby revealing detailed intermolecular interactions. Structural and functional assays highlight that two highly conserved residues of ORF10, L60 and M413, play critical roles in both complex assembly and mRNA export inhibition. Interestingly, although ORF10 occupies the RNA-binding groove of Rae1-Nup98, the ORF10-Rae1-Nup98 ternary complex still maintains a comparable RNA-binding ability due to the ORF10-RNA direct interaction. Moreover, mutations on the RNA-binding surface of ORF10 disrupt its function of mRNA export inhibition. Our work demonstrates the molecular mechanism of ORF10-mediated selective inhibition and provides insights into the functions of Rae1-Nup98 in regulating host mRNA export.


Assuntos
Transporte de RNA/fisiologia , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Animais , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/química , Células Sf9 , Transativadores/química
14.
Biochem Genet ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129720

RESUMO

Lung cancer has a high morbidity and mortality among malignant tumors, and lung adenocarcinoma (LUAD) is the main type of lung cancer. In recent years, circular RNAs (circRNAs) have been confirmed to play an important role in the generation and development of human cancer. However, the specific role and mechanism of circ-NUP98 in LUAD are still unclear and need to be further investigated. Circ-NUP98, microRNA-188-3p (miR-188-3p), and chromobox homolog 1 (CBX1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell-counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, wound healing, and transwell assay were used to observe LUAD cell proliferation, apoptosis, migration, invasion, and cell-cycle progression. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were examined using special assay kits. CyclinD1, Bcl-2-related X protein (Bax), matrix metalloproteinase 9 (MMP9) protein, and CBX1 protein levels were determined using Western blot. The interaction between miR-188-3p and circ-NUP98 or CBX1 was identified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. In vivo efficacy of circ-NUP98 was evaluated in a xenograft tumor model. Besides, the expression of CBX1 and KI67 in the tumors was detected by immunohistochemical (IHC) assay. Circ-NUP98 and CBX1 expressions were upregulated in LUAD tissues and cells, and miR-188-3p was decreased. Downregulation of circ-NUP98 could inhibit the proliferation, migration, invasion, and oxidative stress, and promote apoptosis of LUAD cells. Mechanism experiments showed that circ-NUP98 acted as a sponge for miR-188-3p to increase CBX1 expression. Knockdown of circ-NUP98 could inhibit the growth of LUAD tumors in vivo. Circ-NUP98 might promote the malignant development of LUAD via the miR-188-3p/CBX1 axis, which might provide a potential new marker for early diagnosis of LUAD.

15.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628773

RESUMO

Gene expression in eukaryotes begins with transcription in the nucleus, followed by the synthesis of messenger RNA (mRNA), which is then exported to the cytoplasm for its translation into proteins. Along with transcription and translation, mRNA export through the nuclear pore complex (NPC) is an essential regulatory step in eukaryotic gene expression. Multiple factors regulate mRNA export and hence gene expression. Interestingly, proteins from certain types of viruses interact with these factors in infected cells, and such an interaction interferes with the mRNA export of the host cell in favor of viral RNA export. Thus, these viruses hijack the host mRNA nuclear export mechanism, leading to a reduction in host gene expression and the downregulation of immune/antiviral responses. On the other hand, the viral mRNAs successfully evade the host surveillance system and are efficiently exported from the nucleus to the cytoplasm for translation, which enables the continuation of the virus life cycle. Here, we present this review to summarize the mechanisms by which viruses suppress host mRNA nuclear export during infection, as well as the key strategies that viruses use to facilitate their mRNA nuclear export. These studies have revealed new potential antivirals that may be used to inhibit viral mRNA transport and enhance host mRNA nuclear export, thereby promoting host gene expression and immune responses.


Assuntos
Viroses , Humanos , Transporte Ativo do Núcleo Celular , Antivirais , Transporte de RNA , Eucariotos , RNA Mensageiro/genética
16.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835439

RESUMO

Two adult siblings born to first-cousin parents presented a clinical phenotype reminiscent of Rothmund-Thomson syndrome (RTS), implying fragile hair, absent eyelashes/eyebrows, bilateral cataracts, mottled pigmentation, dental decay, hypogonadism, and osteoporosis. As the clinical suspicion was not supported by the sequencing of RECQL4, the RTS2-causative gene, whole exome sequencing was applied and disclosed the homozygous variants c.83G>A (p.Gly28Asp) and c.2624A>C (p.Glu875Ala) in the nucleoporin 98 (NUP98) gene. Though both variants affect highly conserved amino acids, the c.83G>A looked more intriguing due to its higher pathogenicity score and location of the replaced amino acid between phenylalanine-glycine (FG) repeats within the first NUP98 intrinsically disordered region. Molecular modeling studies of the mutated NUP98 FG domain evidenced a dispersion of the intramolecular cohesion elements and a more elongated conformational state compared to the wild type. This different dynamic behavior may affect the NUP98 functions as the minor plasticity of the mutated FG domain undermines its role as a multi-docking station for RNA and proteins, and the impaired folding can lead to the weakening or the loss of specific interactions. The clinical overlap of NUP98-mutated and RTS2/RTS1 patients, accounted by converging dysregulated gene networks, supports this first-described constitutional NUP98 disorder, expanding the well-known role of NUP98 in cancer.


Assuntos
Mutação em Linhagem Germinativa , Complexo de Proteínas Formadoras de Poros Nucleares , Síndrome de Rothmund-Thomson , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Síndrome de Rothmund-Thomson/genética , Irmãos , Masculino , Feminino , Conformação Proteica
17.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216478

RESUMO

We describe recent updates of existing molecular-targeting agents and emerging novel gene-specific strategies. FLT3 and IDH inhibitors are being tested in combination with conventional chemotherapy for both medically fit patients and patients who are ineligible for intensive therapy. FLT3 inhibitors combined with non-cytotoxic agents, such as BCL-2 inhibitors, have potential therapeutic applicability. The menin-MLL complex pathway is an emerging therapeutic target. The pathway accounts for the leukemogenesis in AML with MLL-rearrangement, NPM1 mutation, and NUP98 fusion genes. Potent menin-MLL inhibitors have demonstrated promising anti-leukemic effects in preclinical studies. The downstream signaling molecule SYK represents an additional target. However, the TP53 mutation continues to remain a challenge. While the p53 stabilizer APR-246 in combination with azacitidine failed to show superiority compared to azacitidine monotherapy in a phase 3 trial, next-generation p53 stabilizers are now under development. Among a number of non-canonical approaches to TP53-mutated AML, the anti-CD47 antibody magrolimab in combination with azacitidine showed promising results in a phase 1b trial. Further, the efficacy was somewhat better in patients with the TP53 mutation. Although clinical evidence has not been accumulated sufficiently, targeting activating KIT mutations and RAS pathway-related molecules can be a future therapeutic strategy.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Alvo Molecular , Mutação , Humanos , Leucemia Mieloide Aguda/genética
18.
Rinsho Ketsueki ; 63(10): 1397-1401, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36351646

RESUMO

NUP98::DDX10 is a rare fusion gene associated with acute myeloid leukemia (AML), for which the prognosis and indication for allogeneic hematopoietic stem cell transplantation are unknown. A 48-year-old woman was diagnosed with AML harboring NUP98::DDX10. The results of quantitative RT-PCR of the fusion mRNA as a minimal residual disease (MRD) marker guided the treatment. In August 2019, the patient achieved hematological remission following standard remission induction therapy with idarubicin and cytarabine. After four cycles of consolidation therapies, MRD was detected, and she underwent allogeneic stem cell transplantation in May 2020. As MRD persisted in June, the immunosuppressant was stopped and three cycles of azacitidine were administered. Despite this, a hematological relapse occurred in January 2021 that was resistant to high-dose cytarabine and an investigational agent. She died as a result of the disease's progression. Thus, a second thought should be given to the timing of transplantation, the bridging, and the intervention for relapse after transplantation. The cases must be accumulated.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Feminino , Humanos , Pessoa de Meia-Idade , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Citarabina/uso terapêutico , Neoplasia Residual , Prognóstico , Recidiva , Complexo de Proteínas Formadoras de Poros Nucleares/genética , RNA Helicases DEAD-box/genética
19.
Biochem Biophys Res Commun ; 536: 59-66, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360543

RESUMO

The novel human betacoronavirus SARS-CoV-2 has caused an unprecedented pandemic in the 21st century. Several studies have revealed interactions between SARS-CoV-2 viral proteins and host nucleoporins, yet their functions are largely unknown. Here, we demonstrate that the open-reading frame 6 (ORF6) of SARS-CoV-2 can directly manipulate localization and functions of nucleoporins. We found that ORF6 protein disrupted nuclear rim staining of nucleoporins RAE1 and NUP98. Consequently, this disruption caused aberrant nucleocytoplasmic trafficking and led to nuclear accumulation of mRNA transporters such as hnRNPA1. Ultimately, host cell nucleus size was reduced and cell growth was halted.


Assuntos
Tamanho do Núcleo Celular , Proteínas Associadas à Matriz Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/virologia , Células HEK293 , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , SARS-CoV-2
20.
Cell Microbiol ; 22(3): e13148, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829498

RESUMO

Hepatitis B virus (HBV) infection is a major cause of acute and chronic liver diseases. During the HBV life cycle, HBV hijacks various host factors to assist viral replication. In this research, we find that the HBV regulatory protein X (HBx) can induce the upregulation of DExH-box RNA helicase 9 (DHX9) expression by repressing proteasome-dependent degradation mediated by MDM2. Furthermore, we demonstrate that DHX9 contributes to viral DNA replication in dependence on its helicase activity and nuclear localization. In addition, the promotion of viral DNA replication by DHX9 is dependent on its interaction with Nup98. Our findings reveal that HBx-mediated DHX9 upregulation is essential for HBV DNA replication.


Assuntos
RNA Helicases DEAD-box/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transativadores/fisiologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Animais , Linhagem Celular , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/genética , Replicação do DNA , DNA Viral , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Hepatite B/genética , Hepatite B/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Regulação para Cima , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA