Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Naturwissenschaften ; 111(4): 34, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913166

RESUMO

With ongoing insect declines, species expanding in distribution and abundance deserve attention, as understanding their success may help design conservation strategies for less successful species. Common causes of these successes include warmer climates, novel resources, and exploiting land use change, including land abandonment. These factors affect the nymphalid butterfly Neptis rivularis, developing on Spiraea spp. shrubs and reaching the north-western limits of its trans-Palearctic distribution in Central Europe. We combined mark-recapture, behaviour analysis, and distribution modelling to study N. rivularis in wetlands of the Trebonsko Protected Landscape (IUCN category V). The long-living adults (up to 4 weeks) spent a considerable amount of time searching for partners, ovipositing and nectaring at Spiraea shrubs, alternating this with stays in tree crowns, where they located cool shelters, spent nights, and presumably fed on honeydew. They formed high-density populations (310 adults/ha), exploiting high host plant abundance. They adhered to floodplains and to conditions of relatively mild winters. The ongoing Spiraea encroachment of abandoned alluvial grasslands is, thus, a transient situation, ultimately followed by forest encroachment. Rewilding the habitats by introducing native ungulates presents an opportunity to restore the disturbance regime of the sites. The increased resource supply combined with a warming climate has opened up temperate Europe to colonization by N. rivularis.


Assuntos
Borboletas , Áreas Alagadas , Animais , Borboletas/fisiologia , República Tcheca
2.
Chem Biodivers ; 21(3): e202301779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426669

RESUMO

Plant-insect interactions are a driving force into ecosystem evolution and community dynamics. Many insect herbivores enter diapause, a developmental arrest stage in anticipation of adverse conditions, to survive and thrive through seasonal changes. Herein, we investigated the roles of medium- to non-polar metabolites during larval development and diapause in a specialist insect herbivore, Chlosyne lacinia, reared on Aldama robusta leaves. Varying metabolites were determined using gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Sesquiterpenes and steroids were the main metabolites putatively identified in A. robusta leaves, whereas C. lacinia caterpillars were characterized by triterpenes, steroids, fatty acids, and long-chain alkanes. We found out that C. lacinia caterpillars biosynthesized most of the identified steroids and fatty acids from plant-derived ingested metabolites, as well as all triterpenes and long-chain alkanes. Steroids, fatty acids, and long-chain alkanes were detected across all C. lacinia instars and in diapausing caterpillars. Sesquiterpenes and triterpenes were also detected across larval development, yet they were not detected in diapausing caterpillars, which suggested that these metabolites were converted to other molecules prior to the diapause stage. Our findings shed light on the chemical content variation across C. lacinia development and diapause, providing insights into the roles of metabolites in plant-insect interactions.


Assuntos
Diapausa , Lepidópteros , Sesquiterpenos , Triterpenos , Animais , Cromatografia Gasosa-Espectrometria de Massas , Ecossistema , Metabolômica/métodos , Esteroides/metabolismo , Sesquiterpenos/metabolismo , Ácidos Graxos/metabolismo , Alcanos , Triterpenos/metabolismo , Larva
3.
Mol Ecol ; 32(3): 575-594, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36373267

RESUMO

In human-altered landscapes, specialist butterflies typically form spatially restricted populations, genetically differentiated due to dispersal restrictions. Generalists, in contrast, display minimum differentiation but high genetic diversity. While local-level actions suffice to conserve specialists and landscape-level actions are necessary for generalists, minimum information exists regarding conservation of species with intermediate features. We targeted two congeneric butterflies, the recently re-expanding Argynnis adippe and the strongly declining A. niobe, co-occurring in the pastoral landscape of the Carpathian Mountains, Czech Republic. We integrated species distribution models, mark-recapture and microsatellite analysis to compare their habitat requirements, adult demography, dispersal and genetic patterns, and expanded the genetic analysis across the Carpathian Arc and beyond to delimit spatial conservation units. In two mountain valleys, both species formed interconnected populations numbering thousands of individuals. Mobility patterns suggested the populations' interconnection across the Czech Carpathians. Genetic diversity was extremely poor in the nonthreatened A. adippe and moderate in the declining A. niobe. No population differentiation was detected within the Czech Carpathians (~1500 km2 ). Low genetic diversity and no differentiation was preserved in A. adippe across East Central Europe, whereas in A. niobe, populations from Serbia were differentiated from the Carpathian Arc + Alps. The high adult mobility linked to low differentiation probably reflects the distribution of larval resources, historically widespread but sparse and currently declining for A. niobe (grazing-disturbed grounds), while currently increasing for A. adippe (abandonment scrub, disturbed woodlands). Units as large as entire mountain systems define population boundaries, and hence conservation management units, for both species.


Assuntos
Borboletas , Animais , Humanos , Borboletas/genética , Genética Populacional , Europa (Continente) , Ecossistema , Demografia
4.
Ecol Lett ; 25(9): 2022-2033, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35965449

RESUMO

Climate change allows species to expand polewards, but non-changing environmental features may limit expansions. Daylength is unaffected by climate and drives life cycle timing in many animals and plants. Because daylength varies over latitudes, poleward-expanding populations must adapt to new daylength conditions. We studied local adaptation to daylength in the butterfly Lasiommata megera, which is expanding northwards along several routes in Europe. Using common garden laboratory experiments with controlled daylengths, we compared diapause induction between populations from the southern-Swedish core range and recently established marginal populations from two independent expansion fronts in Sweden. Caterpillars from the northern populations entered diapause in clearly longer daylengths than those from southern populations, with the exception of caterpillars from one geographically isolated population. The northern populations have repeatedly and rapidly adapted to their local daylengths, indicating that the common use of daylength as seasonal cue need not strongly limit climate-induced insect range expansions.


Assuntos
Borboletas , Animais , Sinais (Psicologia) , Fotoperíodo , Estações do Ano , Temperatura
5.
Proc Biol Sci ; 288(1961): 20211560, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34702070

RESUMO

In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria, we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R-) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R-) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R- cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5-8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.


Assuntos
Borboletas , Visão de Cores , Animais , Borboletas/fisiologia , Percepção de Cores/fisiologia , Luz , Células Fotorreceptoras de Invertebrados/fisiologia
6.
Mol Phylogenet Evol ; 137: 86-103, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31022515

RESUMO

Our understanding of the origin and evolution of the astonishing Neotropical biodiversity remains somewhat limited. In particular, decoupling the respective impacts of biotic and abiotic factors on the macroevolution of clades is paramount to understand biodiversity assemblage in this region. We present the first comprehensive molecular phylogeny for the Neotropical Anaeini leafwing butterflies (Nymphalidae, Charaxinae) and, applying likelihood-based methods, we test the impact of major abiotic (Andean orogeny, Central American highland orogeny, Proto-Caribbean seaway closure, Quaternary glaciations) and biotic (host plant association) factors on their macroevolution. We infer a robust phylogenetic hypothesis for the tribe despite moderate support in some derived clades. Our phylogenetic inference recovers the genus Polygrapha Staudinger, [1887] as polyphyletic, rendering the genera FountaineaRydon, 1971 and Memphis Hübner, [1819] paraphyletic. Consequently, we transfer Polygrapha tyrianthina (Salvin & Godman, 1868) comb. nov. to Fountainea and Polygrapha xenocrates (Westwood, 1850) comb. nov. to Memphis. We infer an origin of the group in the late Eocene ca. 40 million years ago in Central American lowlands which at the time were separated from South America by the Proto-Caribbean seaway. The biogeographical history of the group is very dynamic, with several oversea colonization events from Central America into the Chocó and Andean regions during intense stages of Andean orogeny. These events coincide with the emergence of an archipelagic setting between Central America and northern South America in the mid-Miocene that likely facilitated dispersal across the now-vanished Proto-Caribbean seaway. The Amazonian region also played a central role in the diversification of the Anaeini, acting both as a museum and a cradle of diversity. We recover a diversification rate shift in the Miocene within the species-rich genus Memphis. State speciation and extinction models recover a significant relationship between this rate shift and host plant association, indicating a positive role on speciation rates of a switch between Malpighiales and new plant orders. We find less support for a role of abiotic factors including the progressive Andean orogeny, Proto-Caribbean seaway closure and Quaternary glaciations. Miocene host plant shifts possibly acted in concert with abiotic and/or biotic factors to shape the diversification of Anaeini butterflies.


Assuntos
Borboletas/classificação , Voo Animal/fisiologia , Oceanos e Mares , Filogenia , Clima Tropical , Asas de Animais/fisiologia , Animais , Biodiversidade , Região do Caribe , Especiação Genética , Funções Verossimilhança , Filogeografia , Fatores de Tempo
7.
Ecology ; 99(12): 2875, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30380155

RESUMO

Butterflies are one of the best-known insect groups, and they have been the subject of numerous studies in ecology and evolution, especially in the tropics. Much attention has been given to the fruit-feeding butterfly guild in biodiversity conservation studies, due to the relative ease with which taxa may be identified and specimens sampled using bait traps. However, there remain many uncertainties about the macroecological and biogeographical patterns of butterflies in tropical ecosystems. In the present study, we gathered information about fruit-feeding butterfly species in local communities from the Atlantic Forests of South America. The ATLANTIC BUTTERFLIES data set, which is part of ATLANTIC SERIES data papers, results from a compilation of 145 unpublished inventories and 64 other references, including articles, theses, and book chapters published from 1949 to 2018. In total, the data set contains 7,062 records (presence) of 279 species of fruit-feeding butterflies identified with taxonomic certainty, from 122 study locations. The Satyrini is the tribe with highest number of species (45%) and records (30%), followed by Brassolini, with 13% of species and 12.5% of records. The 10 most common species correspond to 14.2% of all records. This data set represents a major effort to compile inventories of fruit-feeding butterfly communities, filling a knowledge gap about the diversity and distribution of these butterflies in the Atlantic Forest. We hope that the present data set can provide guidelines for future studies and planning of new inventories of fruit-feeding butterflies in this biome. The information presented here also has potential use in studies across a great variety of spatial scales, from local and landscape levels to macroecological research and biogeographical research. We expect that such studies be very important for the better implementation of conservation initiatives, and for understanding the multiple ecological processes that involve fruit-feeding butterflies as biological indicators. No copyright restrictions apply to the use of this data set. Please cite this Data paper when using the current data in publications or teaching events.

8.
BMC Evol Biol ; 17(1): 226, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162029

RESUMO

BACKGROUND: Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. RESULTS: Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. CONCLUSIONS: The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.


Assuntos
Borboletas/anatomia & histologia , Borboletas/fisiologia , Pigmentação , Animais , Borboletas/classificação , Borboletas/ultraestrutura , Cor , Filogenia , Análise Espectral , Visão Ocular , Asas de Animais/ultraestrutura
9.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093221

RESUMO

An ovipositing insect experiences many sensory challenges during her search for a suitable host plant. These sensory challenges become exceedingly pronounced when host range increases, as larger varieties of sensory inputs have to be perceived and processed in the brain. Neural capacities can be exceeded upon information overload, inflicting costs on oviposition accuracy. One presumed generalist strategy to diminish information overload is the acquisition of a focused search during its lifetime based on experiences within the current environment, a strategy opposed to a more genetically determined focus expected to be seen in relative specialists. We hypothesized that a broader host range is positively correlated with mushroom body (MB) plasticity, a brain structure related to learning and memory. To test this hypothesis, butterflies with diverging host ranges (Polygonia c-album, Aglais io and Aglais urticae) were subjected to differential environmental complexities for oviposition, after which ontogenetic MB calyx volume differences were compared among species. We found that the relative generalist species exhibited remarkable plasticity in ontogenetic MB volumes; MB growth was differentially stimulated based on the complexity of the experienced environment. For relative specialists, MB volume was more canalized. All in all, this study strongly suggests an impact of host range on brain plasticity in Nymphalid butterflies.


Assuntos
Borboletas/fisiologia , Memória , Corpos Pedunculados/fisiologia , Plasticidade Neuronal , Oviposição , Animais
10.
Mol Phylogenet Evol ; 97: 233-241, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26724404

RESUMO

Afrotropical Acraeini butterflies provide a fascinating potential model system to contrast with the Neotropical Heliconiini, yet their phylogeny remains largely unexplored by molecular methods and their generic level nomenclature is still contentious. To test the potential of mitogenomes in a simultaneous analysis of the radiation, we sequenced the full mitochondrial genomes of 19 African species. Analyses show the potential of mitogenomic phylogeny reconstruction in this group. Inferred relationships are largely congruent with a previous multilocus study. We confirm a monophyletic Telchinia to include the Asiatic Pareba with a complicated paraphylum, traditional (sub)genus Acraea, toward the base. The results suggest that several proposed subgenera and some species groups within Telchinia are not monophyletic, while two other (sub)genera could possibly be combined. Telchinia was recovered without strong support as sister to the potentially interesting system of distasteful model butterflies known as Bematistes, a name that is suppressed in some treatments. Surprisingly, we find that this taxon has remarkably divergent mitogenomes and unexpected synapomorphic tRNA rearrangements. These gene order changes, combined with evidence for deviating dN/dS ratios and evidence for episodal diversifying selection, suggest that the ancestral Bematistes mitogenome has had a turbulent past. Our study adds genetic support for treating this clade as a distinct genus, while the alternative option, adopted by some authors, of Acraea being equivalent to Acraeini merely promotes redundancy. We pave the way for more detailed mitogenomic and multi-locus molecular analyses which can determine how many genera are needed (possibly at least six) to divide Acraeini into monophyletic groups that also facilitate communication about their biology.


Assuntos
Borboletas/genética , Genoma Mitocondrial/genética , Genômica , Filogenia , Animais , Borboletas/classificação , Ordem dos Genes/genética , RNA de Transferência/genética
11.
Syst Biol ; 64(5): 752-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26012872

RESUMO

The recent publication of a time-tree for the plant family Solanaceae (nightshades) provides the opportunity to use independent calibrations to test divergence times previously inferred for the diverse Neotropical butterfly tribe Ithomiini. Ithomiini includes clades that are obligate herbivores of Solanaceae, with some genera feeding on only one genus. We used 8 calibrations extracted from the plant tree in a new relaxed molecular-clock analysis to produce an alternative temporal framework for the diversification of ithomiines. We compared the resulting age estimates to: (i) a time-tree obtained using 7 secondary calibrations from the Nymphalidae tree of Wahlberg et al. (2009), and (ii) Wahlberg et al.'s (2009) original age estimates for the same clades. We found that Bayesian clock estimates were rather sensitive to a variety of analytical parameters, including taxon sampling. Regardless of this sensitivity however, ithomiine divergence times calibrated with the ages of nightshades were always on average half the age of previous estimates. Younger dates for ithomiine clades appear to fit better with factors long suggested to have promoted diversification of the group such as the uplifting of the Andes, in the case of montane genera. Alternatively, if ithomiines are as old as previous estimates suggest, the recent ages inferred for the diversification of Solanaceae seem likely to be seriously underestimated. Our study exemplifies the difficulty of testing hypotheses of divergence times and of choosing between alternative dating scenarios, and shows that age estimates based on seemingly plausible calibrations may be grossly incongruent.


Assuntos
Borboletas/classificação , Classificação/métodos , Filogenia , Animais , Fósseis , Solanaceae/classificação , Tempo
12.
Artigo em Inglês | MEDLINE | ID: mdl-27072662

RESUMO

Butterflies belonging to the nymphalid subfamily, Morphinae, are famous for their brilliant blue wing coloration and iridescence. These striking optical phenomena are commonly explained as to originate from multilayer reflections by the ridges of the wing scales. Because the lower lamina of the scales of related nymphalid butterflies, the Nymphalinae, plays a dominant role in the wing coloration, by acting as a thin film reflector, we investigated single blue scales of three characteristic Morpho species: M. epistrophus, M. helenor and M. cypris. The experimental data obtained by spectrophotometry, scatterometry and scanning electron microscopy demonstrated that also in the Morpho genus the lower lamina of both the cover and ground scales acts as an optical thin film reflector, contributing importantly to the blue structural coloration of the wings. Melanin pigment has a contrast-enhancing function in a sub-class of ground scales.


Assuntos
Borboletas/metabolismo , Borboletas/ultraestrutura , Iridescência , Asas de Animais/metabolismo , Asas de Animais/ultraestrutura , Animais , Microscopia Eletrônica de Varredura , Pigmentação , Especificidade da Espécie , Espectrofotometria
13.
J Exp Biol ; 219(Pt 15): 2377-87, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27247318

RESUMO

Most butterfly families expand the number of spectrally distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments; however, most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here, we examined the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2 We found that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356, ∼390 and 470 nm), while males have two (λmax=390 and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax∼555 nm, and red, λmax∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not - to our knowledge - been reported in any animal.


Assuntos
Borboletas/fisiologia , Olho Composto de Artrópodes/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Caracteres Sexuais , Animais , Olho Composto de Artrópodes/anatomia & histologia , Feminino , Masculino , Opsinas/metabolismo , Fenômenos Ópticos
14.
Oecologia ; 181(1): 235-43, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26815366

RESUMO

Tropical fruit-feeding nymphalid butterflies generally restrict adult foraging exclusively to either the canopy or understory strata. We compared canopy and understory butterfly communities using data from four long-term studies in Central and South America. At all study sites we found little similarity in species composition between canopy and understory, with most species showing a strong affinity for one of the two habitats. There was a consistent phylogenetic signal for canopy and understory association, suggesting a substantial evolutionary history with these habitats. In addition to compositional differences, we found different patterns of beta diversity between canopy and understory communities. Across all study sites, the canopy had greater temporal and spatial beta diversity compared to the understory. Although these two communities are composed of the same feeding guild and separated only by a relatively small vertical space, each has its own stratum-specific species composition and community dynamics.


Assuntos
Distribuição Animal , Biodiversidade , Borboletas/fisiologia , Floresta Úmida , Animais , Costa Rica , Equador , Peru , Filogenia , Estações do Ano
15.
Oecologia ; 180(2): 335-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26141793

RESUMO

Herbivorous insects specialized on a narrow set of plants are believed to be better adapted to their specific hosts. This hypothesis is supported by observations of herbivorous insect species with a broader diet breadth which seemingly pay a cost through decreased oviposition accuracy. Despite many studies investigating female oviposition behavior, there is a lack of knowledge on how larvae cope behaviorally with their mothers' egg-laying strategies. We have examined a unique system of five nymphalid butterfly species with different host plant ranges that all feed on the same host plant. The study of this system allowed us to compare at the species level how oviposition preference is related to neonate larval responses in several disadvantageous situations. We found a general co-adaptation between female and larval abilities, where species with more discriminating females had larvae that were less able to deal with a suboptimal initial feeding site. Conversely, relatively indiscriminate females had more precocious larvae with better abilities to cope with suboptimal sites. Despite similarities between the tested species with similar host ranges, there were also striking differences. Generalist and specialist species can be found side by side in many clades, with each clade having a specific evolutionary history. Such clade-specific, phylogenetically determined preconditions apparently have affected how precisely a broad or narrow diet breadth can be realized.


Assuntos
Borboletas/fisiologia , Dieta , Herbivoria/fisiologia , Animais , Evolução Biológica , Feminino , Larva , Oviposição/fisiologia , Plantas
16.
J Evol Biol ; 28(11): 2009-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26249210

RESUMO

Ocelli are serially repeated colour patterns on the wings of many butterflies. Eyespots are elaborate ocelli that function in predator avoidance and deterrence as well as in mate choice. A phylogenetic approach was used to study ocelli and eyespot evolution in Vanessa butterflies, a genus exhibiting diverse phenotypes among these serial homologs. Forty-four morphological characters based on eyespot number, arrangement, shape and the number of elements in each eyespot were defined and scored. Ocelli from eight wing cells on the dorsal and ventral surfaces of the forewing and hindwing were evaluated. The evolution of these characters was traced over a phylogeny of Vanessa based on 7750 DNA base pairs from 10 genes. Our reconstruction predicts that the ancestral Vanessa had 5 serially arranged ocelli on all four wing surfaces. The ancestral state on the dorsal forewing and ventral hindwing was ocelli arranged in two heterogeneous groups. On the dorsal hindwing, the ancestral state was either homogenous or ocelli arranged in two heterogeneous groups. On the ventral forewing, we determined that the ancestral state was organized into three heterogeneous groups. In Vanessa, almost all ocelli are individuated and capable of independent evolution relative to other colour patterns except for the ocelli in cells -1 and 0 on the dorsal and ventral forewings, which appear to be constrained to evolve in parallel. The genus Vanessa is a good model system for the study of serial homology and the interaction of selective forces with developmental architecture to produce diversity in butterfly colour patterns.


Assuntos
Borboletas/anatomia & histologia , Borboletas/fisiologia , Pigmentação , Asas de Animais/anatomia & histologia , Animais , Borboletas/genética , Filogenia , Especificidade da Espécie , Asas de Animais/fisiologia
17.
J Evol Biol ; 28(8): 1417-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079599

RESUMO

Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Borboletas/fisiologia , Animais , Borboletas/genética , Fluxo Gênico , Isolamento Reprodutivo , Seleção Genética , Asas de Animais
18.
J Anim Ecol ; 84(3): 808-816, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25484251

RESUMO

Flight is a key innovation in the evolutionary success of insects and essential to dispersal, territoriality, courtship and oviposition. Wing shape influences flight performance and selection likely acts to maximize performance for conducting essential behaviours that in turn results in the evolution of wing shape. As wing shape also contributes to fitness, optimal shapes for particular flight behaviours can be assessed with aerodynamic predictions and placed in an ecomorphological context. Butterflies in the tribe Haeterini (Nymphalidae) are conspicuous members of understorey faunas in lowland Neotropical forests. Field observations indicate that the five genera in this clade differ in flight height and behaviour: four use gliding flight at the forest floor level, and one utilizes flapping flight above the forest floor. Nonetheless, the association of ground level gliding flight behaviour and wing shape has never been investigated in this or any other butterfly group. We used landmark-based geometric morphometrics to test whether wing shapes in Haeterini and their close relatives reflected observed flight behaviours. Four genera of Haeterini and some distantly related Satyrinae showed significant correspondence between wing shape and theoretical expectations in performance trade-offs that we attribute to selection for gliding in ground effect. Forewing shape differed between sexes for all taxa, and male wing shapes were aerodynamically more efficient for gliding flight than corresponding females. This suggests selection acts differentially on male and female wing shapes, reinforcing the idea that sex-specific flight behaviours contribute to the evolution of sexual dimorphism. Our study indicates that wing shapes in Haeterini butterflies evolved in response to habitat-specific flight behaviours, namely gliding in ground effect along the forest floor, resulting in ecomorphological partitions of taxa in morphospace. The convergent flight behaviour and wing morphology between tribes of Satyrinae suggest that the flight environment may offset phylogenetic constraints. Overall, this study provides a basis for exploring similar patterns of wing shape evolution in other taxa that glide in ground effect.


Assuntos
Borboletas/anatomia & histologia , Voo Animal , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Ecossistema , Feminino , Masculino , Filogenia , Floresta Úmida , Fatores Sexuais
19.
Mol Phylogenet Evol ; 79: 69-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24952320

RESUMO

The butterfly tribe Melitaeini [Nymphalidae] contains numerous species that have been the subjects of a wide range of biological studies. Despite numerous taxonomic revisions, many of the evolutionary relationships within the tribe remain unresolved. Utilizing mitochondrial and nuclear gene regions, we produced a time-calibrated phylogenetic hypothesis for 222 exemplars comprising at least 178 different species and 21 of the 22 described genera, making this the most complete phylogeny of the tribe to date. Our results suggest that four well-supported clades corresponding to the subtribes Euphydryina, Chlosynina, Melitaeina, and Phyciodina exist within the tribe. This analysis is also represents the most complete phylogenetic analysis of the Chlosynina to date, and includes several genera and species that have been previously excluded from published phylogenies of this group.


Assuntos
Evolução Biológica , Borboletas/classificação , Filogenia , Animais , Teorema de Bayes , Modelos Genéticos , Análise de Sequência de DNA
20.
Ecol Evol ; 14(7): e11704, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005883

RESUMO

The mountains in the Atlantic Forest domain are environments that harbor a high biodiversity, including species adapted to colder climates that were probably influenced by the climatic variations of the Pleistocene. To understand the phylogeographic pattern and assess the taxonomic boundaries between two sister montane species, a genomic study of the butterflies Actinote mantiqueira and A. alalia (Nymphalidae: Acraeini) was conducted. Analyses based on partial sequences of the mitochondrial gene COI (barcode region) failed to recover any phylogenetic or genetic structure discriminating the two species or sampling localities. However, single nucleotide polymorphisms gathered using Genotyping-by-Sequencing provided a strong isolation pattern in all analyses (genetic distance, phylogenetic hypothesis, clustering analyses, and F ST statistics) which is consistent with morphology, separating all individuals of A. alalia from all populations of A. mantiqueira. The three sampled mountain ranges where A. mantiqueira populations occur-Serra do Mar, Serra da Mantiqueira, and Poços de Caldas Plateau-were identified as three isolated clusters. Paleoclimate simulations indicate that both species' distributions changed according to climatic oscillations in the Pleistocene period, with the two species potentially occurring in areas of lower altitude during glacial periods when compared to the interglacial periods (as the present). Besides, a potential path between their distribution through the Serra do Mar Mountain range was inferred. Therefore, the Pleistocene climatic fluctuation had a significant impact on the speciation process between A. alalia and A. mantiqueira, which was brought on by isolation at different mountain summits during interglacial periods, as shown by the modeled historical distribution and the observed genetic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA