Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 338: 117778, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019021

RESUMO

Source contributions and regional transport of maximum daily average 8-h (MDA8) O3 during a high O3 month (June 2019) in Henan province in central China are explored using a source-oriented Community Multiscale Air Quality (CMAQ) model. The monthly average MDA8 O3 exceeds ∼70 ppb in more than half of the areas and shows a clear spatial gradient, with lower O3 concentrations in the southwest and higher in the northeast. Significant contributions of anthropogenic emissions to monthly average MDA8 O3 concentrations of more than 20 ppb are predicted in the provincial capital Zhengzhou, mostly due to emissions from the transportation sector (∼50%) and in the areas in the north and northeast regions where industrial and power generation-related emissions are high. Biogenic emissions in the region only contribute to approximately 1-3 ppb of monthly average MDA8 O3. In industrial areas north of the province, their contributions reach 5-7 ppb. Two CMAQ-based O3-NOx-VOCs sensitivity assessments (the local O3 sensitivity ratios based on the direct decoupled method and the production ratio of H2O2 to HNO3) and the satellite HCHO to NO2 column density ratio consistently show that most of the areas in Henan are in NOx-limited regime. In contrast, the high O3 concentration areas in the north and at the city centers are in the VOC-limited or transition regimes. The results from this study suggest that although reducing NOx emissions to reduce O3 pollution in the region is desired in most areas, VOC reductions must be applied to urban and industrial regions. Source apportionment simulations with and without Henan anthropogenic emissions show that the benefit of local anthropogenic NOx reduction might be lower than expected from the source apportionment results because the contributions of Henan background O3 increase in response to the reduced local anthropogenic emissions due to less NO titration. Thus, collaborative O3 controls in neighboring provinces are needed to reduce O3 pollution problems in Henan effectively.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , China , Monitoramento Ambiental/métodos , Peróxido de Hidrogênio , Ozônio/análise , Compostos Orgânicos Voláteis/análise
2.
J Environ Manage ; 312: 114915, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313148

RESUMO

To curb the continuous deterioration of ozone (O3) pollution in China, identifying the O3-precursor sensitivity (OPS) and its driving factors is a prerequisite for formulating effective O3 pollution control measures. Traditional OPS identification methods have limitations in terms of spatiotemporal representation and timeliness; therefore, they are not appropriate for making OPS forecasts for O3 contingency control. OPS is not only influenced by local precursor emissions but is also closely related to meteorological conditions governed by large-scale circulation (LSC). In this study, a localized three-dimensional numerical modeling system was used to investigate the relationship between LSC and OPS in the Pearl River Delta (PRD) of China during September 2017, a month with continuous O3 pollution. Our results highlighted that there was a close relationship between LSC and OPS over the PRD, and the four dominant LSC patterns corresponded well to the NOx-limited, NOx-limited, VOC-limited, and transitional regimes, respectively. The clear linkage between LSC and OPS was mainly driven by the spatial heterogeneity of NOx and VOC emissions within and beyond the PRD along the prevailing winds under different LSC patterns. A conceptual model was developed to highlight the intrinsic causality between the LSC and OPS. Because current technology can accurately forecast LSC 48-72 h in advance, the LSC-based OPS forecast method provided us with a novel approach to guide contingency control and management measures to reduce peak O3 at a regional scale.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , Rios , Compostos Orgânicos Voláteis/análise
3.
Sci Total Environ ; 944: 173712, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38830412

RESUMO

The sensitivity of tropospheric ozone (O3) to its precursors volatile organic compounds (VOCs) and nitrogen oxides (NOX) determines the emission reduction strategy for O3 mitigation. Due to the lack of comprehensive vertical measurements of VOCs, the vertical distribution of O3 sensitivity regimes has not been well understood. O3 precursor sensitivity determined by ground-level measurements has been generally used to guide O3 control strategy. Here, to precisely diagnose O3 sensitivity regimes at different heights in the planetary boundary layer (PBL), we developed a vertical measurement system based on an unmanned aerial vehicle platform to conduct comprehensive vertical measurements of VOCs, NOX and other relevant parameters. Our results suggest that the O3 precursor sensitivity shifts from a VOC-limited regime at the ground to a NOX-limited regime at upper layers, indicating that the ground-level O3 sensitivity cannot represent the situation of the whole PBL. We also found that the state-of-the-art photochemical model tends to underestimate oxygenated VOCs at upper layers, resulting in overestimation of the degree of VOCs-limited regime. Therefore, thorough vertical measurements of VOCs to accurately diagnose O3 precursor sensitivity is in urgent need for the development of effective O3 control strategies.

4.
Environ Int ; 174: 107887, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37001216

RESUMO

Long Island Sound (LIS) frequently experiences ozone (O3) exceedance events that surpass national ambient air quality standards (NAAQS) due to complex driving factors. The underlying mechanisms governing summertime O3 pollution are investigated through collaborative observations from lidar remote sensing and ground samplers during the 2018 LIS Tropospheric O3 Study (LISTOS). Regional transport and local chemical reactions are identified as the two key driving factors behind the observed O3 episodes in LIS. An enhanced laminar structure is observed in the O3 vertical structure in the atmospheric boundary layer (i.e., 0-2 km layer) for the case dominated by regional transport. An O3 formation regime shift is found in ozone-precursor sensitivity (OPS) for the O3 exceedance event dominated by regional transport with NOx-enriched air mass transport from the New York City (NYC) urban area to LIS. Furthermore, the Integrated Process Rate (IPR) analysis demonstrates that transport from the NYC urban area contributed 40% and 27.1% of surface O3 enhancement to the cases dominated by regional transport and local production, respectively. This study provides scientific evidence to uncovers two key processes that govern summertime O3 pollution over LIS and can help to improve emission control strategies to meet the attainment standards for ambient O3 levels over LIS and other similar coastal areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar/análise , Cidade de Nova Iorque , China
5.
Environ Int ; 158: 106952, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717174

RESUMO

Ground-level O3 pollution has been continuously worsening in China despite gradual improvement in other major pollutant levels. Understanding the sensitivity of O3 production to its precursors (OPS) is a prerequisite for formulating effective O3 control measures, but this has been hampered by significant discrepancies in OPS produced by traditional identification approaches using observation-based models (OBM) and emission-based models (EBM). In this study, by applying OBM and EBM in parallel within a month having significant O3 pollution in Shanghai, China, we demonstrated that a lack of carbonyl input, overestimation in NO2 monitoring data, and differences in simulation period and emission reduction area were the core factors leading to OPS discrepancies, and that a reliable OPS cannot be obtained unless these factors are reconciled. By collectively addressing these factors, the number of days with a consistent OPS from both models increased from 6-7 to 20-21 in a month, and the R value defined to quantify the discrepancy decreased by ∼55%. The contributions of these factors to OPS discrepancy differed greatly in urban and suburban settings, mainly caused by differences in pollutant emission and transport characteristics. Overall, OPS identified solely by OBM or EBM is associated with great uncertainty, while reliable OPS estimation can be achieved by a collective application of OBM and EBM with consensus on the above factors. The method demonstrated here could be applied to other photo-chemically active regions worldwide as part of efforts to address ozone pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
6.
Environ Pollut ; 232: 55-64, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28958727

RESUMO

Data from an in situ monitoring network and five ozone sondes are analysed during August of 2012, and a high tropospheric ozone episode is observed around the 8th of AUG. The Community Multi-scale Air Quality (CMAQ) model and its process analysis tool were used to study factors and mechanisms for high ozone mixing ratio at different levels of ozone vertical profiles. A sensitive scenario without chemical initial and boundary conditions (ICBCs) from MOZART4-GEOS5 was applied to study the impact of stratosphere-troposphere exchange (STE) on vertical ozone. The simulation results indicated that the first high ozone peak near the tropopause was dominated by STE. Results from process analysis showed that: in the urban area, the second peak at approximately 2 km above ground height was mainly caused by local photochemical production. The third peak (near surface) was mainly caused by the upwind transportation from the suburban/rural areas; in the suburban/rural areas, local photochemical production of ozone dominated the high ozone mixing ratio from the surface to approximately 3 km height. Furthermore, the capability of indicators to distinguish O3-precursor sensitivity along the vertical O3 profiles was investigated. Two sensitive scenarios, which had cut 30% anthropogenic NOX or VOC emissions, showed that O3-precursor indicators, specifically the ratios of O3/NOy, H2O2/HNO3 or H2O2/NOZ, could partly distinguish the O3-precursor sensitivity between VOCs-sensitive and NOx-sensitive along the vertical profiles. In urban area, the O3-precursor relationship transferred from VOCs-sensitive within the boundary layer to NOx-sensitive at approximately 1-3 km above ground height, further confirming the dominant roles of transportation and photochemical production in high O3 peaks at the near-ground layer and 2 km above ground height, respectively.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Ozônio/análise , Poluição do Ar/análise , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA