Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gene Med ; 24(2): e3394, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34665488

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Recent studies have demonstrated that lncRNAs play an important role in tumorigenesis. LINC01291 has been confirmed to be involved in the proliferation and migration of different cancers, although the function of LINC01291 in HCC is still unknown. METHODS: First, the expression of LINC01291 in 50 paired HCC tissues, adjacent normal tissues and HCC cell lines was measured by a quantitative real-time polymerase chain reaction. Then, the function of LINC01291 in HCC cell proliferation, migration and invasion was measured by colony formation, Cell Counting Kit-8 assays, wound healing assays and transwell assays. In addition, E-cadherin, N-cadherin, vimentin and oxidative stress-responsive 1 (OXSR1) protein expression levels were assessed via western blotting. Luciferase reporter assays were used to confirm the relationship between LINC01291 and miR-186-5p, as well as miR-186-5p and OXSR1 mRNA. Rescue assays and in vivo experiments further confirmed the LINC01291/miR-186-5p/OXSR1 axis in the progression of HCC. RESULTS: LINC01291 was upregulated in both HCC tissues and cell lines. Knockdown of LINC01291 inhibited the proliferation, migration, invasion and epithelial-mesenchymal progression (EMT) of HCC cells. In addition, LINC01291 could overexpress OXSR1 by sponging miR-186-5p, and OXSR1 overexpression or miR-186-5p inhibition could rescue the effect of LINC01291 knockdown in YY-8103 cell lines. In addition, lentiviral sh-LINC01291 could effectively inhibit the growth of subcutaneous YY-8103 xenograft tumors, whereas the anticancer effect could be reversed by cotransfection with in-miR-186-5p or ov-OXSR1. CONCLUSIONS: LINC01291 can promote the proliferation, migration, invasion and EMT of HCC cells via the miR-186-5p/OXSR1 axis, and sh-LINC01291 can inhibit tumor growth in a xenograft mouse model.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases
2.
Metab Brain Dis ; 37(7): 2277-2290, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751788

RESUMO

Long non-coding RNAs (lncRNAs) have been confirmed to be involved in epilepsy development. It has been reported that lncRNA ZFAS1 plays a vital regulatory role in epilepsy progression. Therefore, the role and molecular mechanism of ZFAS1 in epilepsy progression deserve further investigation. Mice status epilepticus (SE) model was constructed, and hippocampal neurons were isolated from mice hippocampus tissues. The expression of ZFAS1, miR-15a-5p and oxidative stress responsive 1 (OXSR1) were determined by quantitative real-time PCR. ELISA assay was used to detect the concentrations of inflammation factors. Cell viability and apoptosis were examined by MTT assay, EdU staining and flow cytometry. Western blot analysis was conducted to measure protein levels, and the productions of SOD and MDA were measured to assess cell oxidative stress. Dual-luciferase reporter assay and RIP assay were employed to validate the relationship between miR-15a-5p and ZFAS1 or OXSR1. LncRNA ZFAS1 was highly expressed in SE mice and SE-stimulated hippocampal neurons. Silenced ZFAS1 promoted viability, while inhibited inflammation, apoptosis and oxidative stress in SE-induced hippocampal neurons. MiR-15a-5p could be targeted by ZFAS1, and its inhibitor also reversed the suppressive effect of ZFAS1 knockdown on SE-induced hippocampal neurons injury. In addition, OXSR1 was a target of miR-15a-5p, and its silencing also could relieve SE-induced hippocampal neurons injury. OXSR1 overexpression reversed the inhibition effect of miR-15a-5p on SE-induced hippocampal neurons injury. Moreover, ZFAS1 positively regulated OXSR1 expression by sponging miR-15a-5p, thereby activating the NF-κB pathway. LncRNA ZFAS1 might contribute to the progression of epilepsy by regulating the miR-15a-5p/OXSR1/NF-κB pathway.


Assuntos
Epilepsia , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/metabolismo , NF-kappa B/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Apoptose/genética , Neurônios/metabolismo , Hipocampo/metabolismo , Epilepsia/genética , Inflamação , Superóxido Dismutase/metabolismo
3.
Ren Fail ; 44(1): 1070-1082, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35793478

RESUMO

Acute kidney injury (AKI) is a common complication of sepsis and increase morbidity and mortality. Long non-coding RNA (LncRNA) GAS6-AS2 was related to inflammation and apoptosis in different diseases by regulating miRNAs and downstream genes, but its role in AKI remains unclear. Thus, we speculated that GAS6-AS2 might function in sepsis-related AKI via regulating target genes. Here, LPS or CLP was used to establish in vitro or in vivo sepsis-related AKI model. The interactions between GAS6-AS2 and miR-136-5p, and miR-136-5p and OXSR1, were validated by luciferase reporter assay, RNA pull-down, or RIP assay. Cell apoptosis was determined by flow cytometry, Western blotting, or IHC. The kidney injury was evaluated by H&E staining. The expression of GAS6-AS2, miR-136-5p, and OXSR1 was determined by qRT-PCR or Western blotting. We found that GAS6-AS2 was up-regulated in LPS-treated HK2 cells and the CLP-induced rat model. In vitro, GAS6-AS2 knockdown decreased cleaved caspase-3 and bax expression and increased bcl-2 expression. The levels of TNF-α, IL-1ß, and IL-6 were reduced by GAS6-AS2 down-regulation. GAS6-AS2 knockdown ameliorated oxidative stress in the cells, as indicated by the reduced ROS and MDA levels and the elevated SOD level. In vivo, GAS6-AS2 down-regulation decreased urinary NGAL and Kim-1 levels and serum sCr and BUN levels, and H&E proved that the kidney injury was alleviated. GAS6-AS2 knockdown also reduced apoptosis, inflammation, and oxidation induced by CLP in vivo. Mechanically, GAS6-AS2 sponged miR-136-5p which targeted OXSR1. Overall, lncRNA GAS6-AS2 knockdown has the potential to ameliorate sepsis-related AKI, and the mechanism is related to miR-136-5p/OXSR1 axis.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Longo não Codificante , Sepse , Injúria Renal Aguda/complicações , Injúria Renal Aguda/genética , Animais , Proliferação de Células , Lipopolissacarídeos , MicroRNAs/genética , Proteínas Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Sepse/complicações , Sepse/genética
4.
Chem Biol Interact ; 369: 110256, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36372260

RESUMO

Copper (Cu) is a common environmental pollutant which has been identified to cause toxic effects on animal bodies. MicroRNAs (miRNAs) are a type of non-coding RNAs involved in the regulation of various cellular activities including autophagy, but the potential regulatory mechanisms after excess Cu intake are still uncertain. Our previous study has prompted that Cu exposure reduced liver miR-455-3p levels. Herein, miR-455-3p was found to be an important molecule in the regulation of Cu-induced autophagy in vivo and in vitro. Histopathology observation of liver tissue indicated that Cu-induced severe hepatic damage including cellular swelling and vacuolization. Meanwhile, excessive Cu exposure not only heighten the mRNA and protein expression levels of Beclin1, Atg5, LC3Ⅰ and LC3Ⅱ, but also decreased miR-455-3p levels. In vitro experiment, Cu-induced autophagy can be attenuated by miR-455-3p overexpression. Additionally, oxidative stress-responsive 1 (OXSR1) was identified as a direct downstream target of miR-455-3p by dual luciferase reporter assays. Moreover, knockdown of OXSR1 can attenuate the autophagy induced by Cu treatment and the miR-455-3p inhibitor. Overall, the miR-455-3p-OXSR1 axis works as a regulator of autophagy under Cu stress, which provides a basis for further revealing the mechanism of chronic Cu poisoning.


Assuntos
Cobre , MicroRNAs , Animais , Cobre/metabolismo , Galinhas/metabolismo , MicroRNAs/metabolismo , Hepatócitos/metabolismo , Autofagia
5.
Diabetol Metab Syndr ; 13(1): 7, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468219

RESUMO

BACKGROUND: Sepsis is life-threatening disease with systemic inflammation and can lead to various diseases, including septic acute kidney injury (AKI). Recently, diverse circular RNAs (circRNAs) are considered to be involved in the development of this disease. In this study, we aimed to elucidate the role of circ-FANCA and the potential action mechanism in sepsis-induced AKI. METHODS: HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. The expression of circ-FANCA, microRNA-93-5p (miR-93-5p) and oxidative stress responsive 1 (OXSR1) mRNA was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was assessed using cell counting kit-8 (CCK-8) assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. The inflammatory response was monitored according to the release of pro-inflammatory cytokines via enzyme-linked immunosorbent assay (ELISA). The activities of oxidative indicators were examined using the corresponding kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to validate the interaction between miR-93-5p and circ-FANCA or OXSR1. Protein analysis was conducted through western blot. RESULTS: Circ-FANCA was upregulated in septic AKI serum specimens and LPS-treated HK2 cells. Functionally, circ-FANCA knockdown facilitated cell proliferation and restrained apoptosis, inflammation and oxidative stress in LPS-triggered HK2 cells. Further mechanism analysis revealed that miR-93-5p was a target of circ-FANCA and circ-FANCA modulated LPS-induced cell damage by targeting miR-93-5p. Meanwhile, miR-93-5p overexpression repressed LPS-treated HK2 cell injury by sponging OXSR1. Furthermore, circ-FANCA regulated OXSR1 expression by sponging miR-93-5p. Besides, exosome-derived circ-FANCA was upregulated in LPS-induced HK2 cells, which was downregulated by GW4869. CONCLUSION: Circ-FANCA knockdown attenuated LPS-induced HK2 cell injury by regulating OXSR1 expression via targeting miR-93-5p.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA