Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm X ; 7: 100232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357578

RESUMO

Diabetes mellitus (DM) is the most prevalent cause of diabetic retinopathy (DRP). DRP has been recognized for a long time as a microvascular disease. Many drugs were used to treat DRP, including vildagliptin (VLD). In addition to its hypoglycemic effect, VLD minimizes ocular inflammation and improves retinal blood flow for individuals with type 2 diabetes mellitus. Nevertheless, VLD can cause upper respiratory tract infections, diarrhea, nausea, hypoglycemia, and poor tolerability when taken orally regularly due to its high water solubility and permeability. Effective ocular administration of VLD is achieved using solid lipid nanoparticles (SLNPs), which improve corneal absorption, prolonged retention, and extended drug release. Ocuserts (OCUs) are sterile, long-acting ocular dosage forms that diminish the need for frequent dosing while improving residence time and stability. Therefore, this study intends to develop VLD solid lipid nanoparticle OCUs (VLD-SLNPs-OCUs) to circumvent the issues commonly associated with VLD. SLNPs were prepared using the double-emulsion/melt dispersion technique. The optimal formula has been implemented in OCUs. Optimization and development of VLD-SLNPs-OCUs were performed using a Box-Behnken Design (BBD). VLD-SLNPs-OCUs loading efficiency was 95.28 ± 2.87%, and differential scanning calorimetry data (DSC) showed the full transformation of VLD to an amorphous state and the excellent distribution in the prepared OCUs matrices. The in vivo release of VLD from the optimized OCUs after 24 h was 35.12 ± 2.47%, consistent with in vitro drug release data of 36.89 ± 3.11. The optimized OCUs are safe to use in the eye, as shown by the ocular irritation test. VLD-SLNPs-OCUs provide extended VLD release, an advantageous alternative to conventional oral dose forms, resulting in fewer systemic adverse effects and less variation in plasma drug levels. VLD-SLNPs-OCUs might benefit retinal microvascular blood flow beyond blood glucose control and may be considered a promising approach to treating diabetic retinopathy.

2.
Int J Biol Macromol ; 110: 308-317, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29341922

RESUMO

In the present investigation, the effect of timolol maleate loaded ocuserts was studied as an alternative for conventional anti-glaucoma formulation. Ocuserts were prepared using natural polymer sodium alginate and ethyl cellulose. Physico-chemical properties along with drug entrapment efficiency (94-98%), content uniformity (93.1% ±â€¯0.264-98.00% ±â€¯0.321), in vitro drug release (83.42% ±â€¯0.35 at end of 12 h), ex vivo permeation all showed satisfactory results, which was found to follow zero order kinetics. Ex vivo permeation studies showed better results, revealed that the permeability coefficient was dependent on polymer type. The sterility test accelerated stability studies and in vivo studies such as eye irritancy test, in vivo drug release of the optimized ocusert was determined. The anti-glaucoma activity was measured using Schiotz tonometer at different time interval. Significant reduction in Intra ocular pressure (IOP) within 3 days was observed in case of rabbits treated with ocusert in comparison to the rabbit treated with marketed eye drop formulation. Hence timolol maleate loaded ocuserts proved to be a promising and viable alternative over conventional eye formulation for the sustained and controlled ophthalmic drug delivery, targeting the drug within the ocular globe thus improving patient compliance for the treatment of glaucoma.


Assuntos
Glaucoma , Pressão Intraocular/efeitos dos fármacos , Pilocarpina , Timolol , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/patologia , Cabras , Pilocarpina/química , Pilocarpina/farmacocinética , Pilocarpina/farmacologia , Coelhos , Timolol/química , Timolol/farmacocinética , Timolol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA