Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.206
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2311798121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442164

RESUMO

An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria.

2.
Appl Environ Microbiol ; 90(8): e0108324, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39041797

RESUMO

Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g., Colwellia). In contrast, exposure to oil, but not dispersants, increased the abundance of other taxa (e.g., Marinobacter) and stimulated hydrocarbon oxidation rates. Here, we advance these findings by interpreting metatranscriptomic data from this experiment to explore how and why specific components of the microbial community responded to distinct organic carbon exposure regimes. Dispersant alone was selected for a unique community and for dominant organisms that reflected treatment- and time-dependent responses. Dispersant amendment also led to diverging functional profiles among the different treatments. Similarly, oil alone was selected for a community that was distinct from treatments amended with dispersants. The presence of oil and dispersants with added nutrients led to substantial differences in microbial responses, likely suggesting increased fitness driven by the presence of additional inorganic nutrients. The oil-only additions led to a marked increase in the expression of phages, prophages, transposable elements, and plasmids (PPTEPs), suggesting that aspects of microbial community response to oil are driven by the "mobilome," potentially through viral-associated regulation of metabolic pathways in ciliates and flagellates that would otherwise throttle the microbial community through grazing.IMPORTANCEMicrocosm experiments simulated the April 2010 Deepwater Horizon oil spill by applying oil and synthetic dispersants (Corexit EC9500A and EC9527A) to deep ocean water samples. The exposure regime revealed severe negative alterations in the treatments' heterotrophic microbial activity and hydrocarbon oxidation rates. We expanded these findings by exploring metatranscriptomic signatures of the microbial communities during the chemical amendments in the microcosm experiments. Here we report how dominant organisms were uniquely associated with treatment- and time-dependent trajectories during the exposure regimes; nutrient availability was a significant factor in driving changes in metatranscriptomic responses. Remarkable signals associated with PPTEPs showed the potential role of mobilome and viral-associated survival responses. These insights underscore the time-dependent environmental perturbations of fragile marine environments under oil and anthropogenic stress.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Água do Mar , Tensoativos , Microbiota/efeitos dos fármacos , Água do Mar/microbiologia , Água do Mar/química , Tensoativos/metabolismo , Tensoativos/farmacologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Transcriptoma , Hidrocarbonetos/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Chemistry ; 30(19): e202303369, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38258609

RESUMO

We demonstrate supramolecular polymerization and formation of 1D nanofiber of azobenzene based organogelator (AZO-4) in cyclic hydrocarbon solvents (toluene and methylcyclohexane). The AZO-4 exhibits J- and H-type aggregates in toluene: MCH (9 : 1) and MCH: toluene (9 : 1) respectively. The type of aggregate was governed by the geometry of the solvents used in the self-assembly process. The J-type aggregates with high thermal stability in toluene is due to the enhanced interaction of AZO-4 π- surface with the toluene π-surface, whereas H-aggregate with moderate thermal stability in MCH was due to the interruption of the cyclic hydrocarbon in van der Waals interactions of peripheral chains of AZO-4 molecule. The light induced reversible photoisomerization is observed for both J- and H-aggregates. The macroscopic property revealed spontaneous and strong gelation in toluene preferably due to the strong interactions of the AZO-4 nanofibers with the toluene solvent molecules compared to the MCH. The rheological measurements revealed thixotropic nature of the gels by step-strain experiments at room temperature. The thermodynamic parameter (ΔHm) of gel-to-sol transition was determined for all the gels to get more insight into the gelation property. Furthermore, the phase selective gelation property was extended to the oil spill recovery application using diesel/water and petrol/water mixture.

4.
Arch Microbiol ; 206(4): 183, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502272

RESUMO

This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.


Assuntos
Petróleo , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tensoativos/química , Glicolipídeos/química , Petróleo/metabolismo
5.
Ecotoxicol Environ Saf ; 277: 116325, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653019

RESUMO

The water accommodated fraction (WAF) of crude oil exerts considerable impacts on marine fish during embryonic stage. Clarifying changes in epigenetic modifications is helpful for understanding the molecular mechanism underlying the toxicity of embryonic WAF exposure. The aim of this study was to explore genome-wide DNA methylation changes in Oryzias melastigma embryos after exposure to the nominal total petroleum hydrocarbon concentration of 500 µg/L in WAF for 7 days. Whole-genome bisulfite sequencing revealed that 8.47 % and 8.46 % of all the genomic C sites were methylated in the control and WAF-exposed groups, respectively. Among the three sequence contexts, methylated CG site had the largest number in both the two groups. The sequence preferences of nearby methylated cytosines were consistent between the two groups. A total of 4798 differentially methylated regions (DMRs) were identified in the promoter region. Furthermore, Gene Ontology analysis revealed that DMR-related genes were enriched mainly for functions related to development and nervous system. Additionally, the Kyoto Encyclopedia of Genes and Genomes pathways enriched in DMR-related genes were related to nervous system and endocrine system. These novel findings provide comprehensive insights into the genome-wide DNA methylation landscape of O. melastigma following embryonic WAF exposure, shedding light on the epigenetic regulatory mechanisms underlying WAF-induced toxicity.


Assuntos
Metilação de DNA , Embrião não Mamífero , Petróleo , Poluentes Químicos da Água , Metilação de DNA/efeitos dos fármacos , Animais , Poluentes Químicos da Água/toxicidade , Petróleo/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 284: 116938, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208578

RESUMO

While evidence indicates that exposure to oil spill incidents can affect mental health, it is unclear whether the mental health effects result from the incident itself or from exposure to associated chemicals. Oil contains chemicals that can impact mental health and these chemicals may have long-term effects due to their persistence in the environment. To address the gap in current knowledge, we conducted cross-sectional and prospective analyses of data from adults who participated in the Health Effects of the Hebei Spirit Oil Spill study. To assess chemical exposure from oil spills, we used indirect exposure indicators such as distance from the contaminated oil band to residences and duration of clean-up work, along with direct exposure indicators such as urine metabolite concentrations of volatile organic compounds and polycyclic aromatic hydrocarbons. Mental health assessments covered posttraumatic stress disorder (PTSD), depression, state anxiety, and trait anxiety. In the cross-sectional analyses, all four mental health issues were found to be associated with proximity to the oil band (p-value<0.05) and showed a positive association with clean-up work duration (p-value<0.05). Cox regression analysis revealed that higher urinary t, t-muconic acid levels were associated with an increased risk of depression (Hazard Ratio [HR] = 1.55, 95 % Confidence Interval [CI] = 1.05-2.28), and elevated 1-hydroxypyrene levels increased the risk of PTSD (HR = 1.60, 95 % CI = 1.03-2.48). Additionally, higher urinary 2-naphthol levels were associated with increased state anxiety (HR = 1.39, 95 % CI = 1.00-1.93) and trait anxiety (HR = 1.64, 95 % CI = 1.15-2.32). These associations persisted even after controlling for distance and duration variables related to psychosocial exposure. Our findings suggest that environmental disaster response plans should prioritize minimizing chemical exposure while also considering the duration and nature of the mental health impacts.


Assuntos
Exposição Ambiental , Saúde Mental , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Masculino , Estudos Transversais , Feminino , Adulto , Pessoa de Meia-Idade , Hidrocarbonetos Policíclicos Aromáticos/urina , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Exposição Ambiental/estatística & dados numéricos , Estudos Prospectivos , Transtornos de Estresse Pós-Traumáticos/urina , Depressão/induzido quimicamente , Compostos Orgânicos Voláteis/urina , Compostos Orgânicos Voláteis/análise , Ansiedade/induzido quimicamente , Ácido Sórbico/análogos & derivados
7.
Ecotoxicol Environ Saf ; 279: 116463, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749194

RESUMO

The environmental impact of oil spills is a critical concern, particularly pertaining to low sulfur marine diesel (LSMD) and high sulfur fuel oil (HSFO) that are commonly involved in coastal spills. Although transcriptomic biomonitoring of sentinel animals can be a powerful tool for assessing biological effects, conventional methods utilize lethal sampling to examine the liver. As a non-lethal alternative, we have previously shown salmonid caudal fin cyp1a1 is significantly responsive to LSMD-derived toxicants. The present study further investigated the transcriptomic biomonitoring potential of coho salmon smolt caudal fin in comparison to liver tissue in the context of LSMD and HSFO seawater accommodated fraction (seaWAF) exposure in cold-water marine environments. Assessing the toxicity of these seaWAFs involved quantifying polycyclic aromatic hydrocarbon (tPAH50) concentrations and generating gene expression profiles. Initial qPCR analyses revealed significant cyp1a1 response in both liver and caudal fin tissues of both genetic sexes to all seaWAF exposures. RNA-Seq analysis, focusing on the highest LSMD and HSFO seaWAF concentrations (28.4±1.8 and 645.08±146.3 µg/L tPAH50, respectively), revealed distinct tissue-specific and genetic sex-independent transcriptomic responses with an overall enrichment of oxidative stress, cell adhesion, and morphogenesis-related pathways. Remarkably, the caudal fin tissue exhibited transcriptomic response patterns comparable to liver tissue, particularly consistent differential expression of 33 gene transcripts in the liver (independent of sex and oil type) and 44 in the caudal fin. The present work underscores the viability of using the caudal fin as a non-lethal alternative to liver sampling for assessing and tracking oil spill exposure in marine environments.


Assuntos
Nadadeiras de Animais , Citocromo P-450 CYP1A1 , Óleos Combustíveis , Fígado , Poluição por Petróleo , Transcriptoma , Poluentes Químicos da Água , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Poluição por Petróleo/efeitos adversos , Nadadeiras de Animais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Masculino , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Óleos Combustíveis/toxicidade , Feminino , Enxofre , Monitoramento Ambiental/métodos , Oncorhynchus kisutch/genética , Gasolina/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química
8.
Ecotoxicology ; 33(8): 959-971, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39048895

RESUMO

Mercury (Hg) concentrations and their associated toxicological effects in terrestrial ecosystems of the Gulf of Mexico are largely unknown. Compounding this uncertainty, a large input of organic matter from the 2010 Deepwater Horizon oil spill may have altered Hg cycling and bioaccumulation dynamics. To test this idea, we quantified blood concentrations of total mercury (THg) in Seaside Sparrows (Ammospiza maritima) and Marsh Rice Rats (Oryzomys palustris) in marshes west and east of the Mississippi River in 2015 and 2016. We also tested for a difference in THg concentrations between oiled and non-oiled sites. To address the potential confounding effect of diet variation on Hg transfer, we used stable nitrogen (δ15N) and carbon (δ13C) isotope values as proxies of trophic position and the source of primary production, respectively. Our results revealed that five to six years after the spill, THg concentrations were not higher in sites oiled by the spill compared to non-oiled sites. In both species, THg was higher at sites east of the Mississippi River compared to control and oiled sites, located west. In Seaside Sparrows but not in Marsh Rice Rats, THg increased with δ15N values, suggesting Hg trophic biomagnification. Overall, even in sites with the most elevated THg, concentrations were generally low. In Seaside Sparrows, THg concentrations were also lower than previously reported in this and other closely related passerines, with only 7% of tested birds exceeding the lowest observed effect concentration associated with toxic effects across bird species (0.2 µg/g ww). The factors associated with geographic heterogeneity in Hg exposure remain uncertain. Clarification could inform risk assessment and future restoration and management actions in a region facing vast anthropogenic changes.


Assuntos
Monitoramento Ambiental , Estuários , Mercúrio , Pardais , Poluentes Químicos da Água , Animais , Sigmodontinae , Áreas Alagadas , Rios/química , Golfo do México , Poluição por Petróleo
9.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257504

RESUMO

Offshore oil spills have the potential to inflict substantial ecological damage, underscoring the critical importance of timely offshore oil spill detection and remediation. At present, offshore oil spill detection typically combines hyperspectral imaging with deep learning techniques. While these methodologies have made significant advancements, they prove inadequate in scenarios requiring real-time detection due to limited model detection speeds. To address this challenge, a method for detecting oil spill areas is introduced, combining convolutional neural networks (CNNs) with the DBSCAN clustering algorithm. This method aims to enhance the efficiency of oil spill area detection in real-time scenarios, providing a potential solution to the limitations posed by the intricate structures of existing models. The proposed method includes a pre-feature selection process applied to the spectral data, followed by pixel classification using a convolutional neural network (CNN) model. Subsequently, the DBSCAN algorithm is employed to segment oil spill areas from the classification results. To validate our proposed method, we simulate an offshore oil spill environment in the laboratory, utilizing a hyperspectral sensing device to collect data and create a dataset. We then compare our method with three other models-DRSNet, CNN-Visual Transformer, and GCN-conducting a comprehensive analysis to evaluate the advantages and limitations of each model.

10.
Sensors (Basel) ; 24(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39275372

RESUMO

Oil spill SAR images are characterized by high noise, low contrast, and irregular boundaries, which lead to the problems of overfitting and insufficient capturing of detailed features of the oil spill region in the current method when processing oil spill SAR images. An improved DeepLabV3+ model is proposed to address the above problems. First, the original backbone network Xception is replaced by the lightweight MobileNetV2, which significantly improves the generalization ability of the model while drastically reducing the number of model parameters and effectively addresses the overfitting problem. Further, the spatial and channel Squeeze and Excitation module (scSE) is introduced and the joint loss function of Bce + Dice is adopted to enhance the sensitivity of the model to the detailed parts of the oil spill area, which effectively solves the problem of insufficient capture of the detailed features of the oil spill area. The experimental results show that the mIOU and F1-score of the improved model in an oil spill region in the Gulf of Mexico reach 80.26% and 88.66%, respectively. In an oil spill region in the Persian Gulf, the mIOU and F1-score reach 81.34% and 89.62%, respectively, which are better than the metrics of the control model.

11.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276394

RESUMO

Maritime transport, responsible for delivering over eighty percent of the world's goods, is the backbone of the global delivery industry. However, it also presents considerable environmental risks, particularly regarding aquatic contamination. Nearly ninety percent of marine oil spills near shores are attributed to human activities, highlighting the urgent need for continuous and effective surveillance. To address this pressing issue, this paper introduces a novel technique named OS-BREEZE. This method employs an Unmanned Surface Vehicle (USV) for assessing the extent of oil pollution on the sea surface. The OS-BREEZE algorithm directs the USV along the spill edge, facilitating rapid and accurate assessment of the contaminated area. The key contribution of this paper is the development of this novel approach for monitoring and managing marine pollution, which significantly reduces the path length required for mapping and estimating the size of the contaminated area. Furthermore, this paper presents a scale model experiment executed at the Coastal and Marine Engineering Research Institute (CAMERI). This experiment demonstrated the method's enhanced speed and efficiency compared to traditional monitoring techniques. The experiment was methodically conducted across four distinct scenarios: the initial and advanced stages of an oil spill at the outer anchoring, as well as scenarios at the inner docking on both the stern and port sides.

12.
J Environ Manage ; 360: 121118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759562

RESUMO

Offshore oil exploration and production in deepwater are associated with environmental risks to marine ecosystems. This research introduces DWOSM (Deep Water Oil Spill Model), a three-dimensional Lagrangian model, which is developed to simulate the transport and fate of oil spills resulting from subsea blowouts. DWOSM comprises three interconnected modules: DWOSM-DSD, which predicts the oil droplet size distribution from a blowout release; DWOSM-NearField, simulating plume dynamics and tracking oil droplets within the plume region; and DWOSM-FarField, modeling the evolution of dispersed oil beyond the near-field. Compared to other oil spill models, this integrated approach improves the transition between near and far fields using a near-field particle tracking algorithm. It also employs the thermodynamic models to enable the prediction of oil properties under varying deep water pressure and temperature. To gauge the reliability and efficacy of DWOSM, a hypothetical case situated within a North American context is employed for model testing. The DWOSM and its each module are juxtaposed with other established oil spill models. The outcomes indicate that DWOSM yields comparable results to these models by providing reasonable predictions of a deepwater blowout. The model's verification through case scenario testing and comparison underscores its potential as a decision tool for assessing and managing the potential environmental impacts of offshore petroleum activities.


Assuntos
Poluição por Petróleo , Modelos Teóricos , Petróleo
13.
J Environ Manage ; 358: 120810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593738

RESUMO

The rise in oil trade and transportation has led to a continuous increase in the risk of oil spills, posing a serious worldwide concern. However, there is a lack of numerical models for predicting oil spill transport in freshwater, especially under icy conditions. To tackle this challenge, we developed a prediction system for oil with ice modeling by coupling the General NOAA Operational Modeling Environment (GNOME) model with the Great Lakes Operational Forecast System (GLOFS) model. Taking Lake Erie as a pilot study, we used observed drifter data to evaluate the performance of the coupled model. Additionally, we developed six hypothetical oil spill cases in Lake Erie, considering both with and without ice conditions during the freezing, stable, and melting seasons spanning from 2018 to 2022, to investigate the impacts of ice cover on oil spill processes. The results showed the effective performance of the coupled model system in capturing the movements of a deployed drifter. Through ensemble simulations, it was observed that the stable season with high-concentration ice had the most significant impact on limiting oil transport compared to the freezing and melting seasons, resulting in an oil-affected open water area of 49 km2 on day 5 with ice cover, while without ice cover it reached 183 km2. The stable season with high-concentration ice showed a notable reduction in the probability of oil presence in the risk map, whereas this reduction effect was less prominent during the freezing and melting seasons. Moreover, negative correlations between initial ice concentration and oil-affected open water area were consistent, especially on day 1 with a linear regression R-squared value of 0.94, potentially enabling rapid prediction. Overall, the coupled model system serves as a useful tool for simulating oil spills in the world's largest freshwater system, particularly under icy conditions, thus enhancing the formulation of effective emergency response strategies.


Assuntos
Camada de Gelo , Lagos , Poluição por Petróleo , Camada de Gelo/química , Modelos Teóricos , Monitoramento Ambiental
14.
Toxicol Mech Methods ; 34(5): 596-605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38375806

RESUMO

Target lipid model (TLM) and toxic unit (TU) approaches were applied to ecotoxicity and chemistry data from low-energy WAFs (LE-WAFs) of source and weathered crude oils originating from the Deepwater Horizon oil spill. The weathered oils included artificially weathered oils and naturally weathered samples collected in the Gulf of Mexico after the spill. Oil weathering greatly reduced the concentrations of identified LE-WAF components, however, the mass of uncharacterized polar material (UPC) in the LE-WAFs remained largely unchanged during the weathering process. While the TLM-derived calculations displayed a significant decrease in toxicity (TUs) for the heavily weathered oils, copepod toxicity, expressed as LC10-based TUs, were comparable between LE-WAFs of fresh and weathered oils. The discrepancy between observed and predicted toxicity for the LE-WAFs of artificially weathered oils may be related to limitations by the chemical analyses or increased toxicity due to generation of new unknown compounds during the weathering process.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Petróleo/toxicidade , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Copépodes/efeitos dos fármacos , Golfo do México , Tempo (Meteorologia) , Dose Letal Mediana
15.
Waste Manag Res ; : 734242X241257095, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915231

RESUMO

Numerous marine oil spill incidents and their environmental catastrophe have raised the concern of the research community and environmental agencies on the topic of the offshore crude oil spill. The oil transport through oil tankers and pipelines has further aggravated the risk of the oil spill. This has led to the necessity to develop an effective, environment-friendly, versatile oil spill clean-up strategy. The current review article analyses various nanotechnology-based methods for marine oil spill clean-up, focusing on their recovery rate, reusability and cost. The authors weighed the three primary factors recovery, reusability and cost distinctively for the analysis based on their significance in various contexts. The findings and analysis suggest that magnetic nanomaterials and nano-sorbent have been the most effective nanotechnology-based marine oil spill remediation techniques, with the magnetic paper based on ultralong hydroxyapatite nanowires standing out with a recovery rate of over 99%. The chitosan-silica hybrid nano-sorbent and multi-wall carbon nanotubes are also promising options with high recovery rates of up to 95-98% and the ability to be reused multiple times. Although the photocatalytic biodegradation approach and the nano-dispersion method do not offer benefits for recovery or reusability, they can nevertheless help lessen the negative ecological effects of marine oil spills. Therefore, careful evaluation and selection of the most appropriate method for each marine oil spill situation is crucial. The current review article provides valuable insights into the current state of nanotechnology-based marine oil spill clean-up methods and their potential applications.

16.
J Environ Sci (China) ; 139: 160-169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105044

RESUMO

The effective and affordable separation of oil and water, a crucial process in the safe handling of environmental disasters such as crude oil spills and recovery of valuable resources, is a highly sought-after yet challenging task. Herein, superhydrophobic PU sponge was fabricated for the fast and cost-effective adsorptive separation of oil and different organic solvents from water. Octadecyltrichlorosilane (OTS)-functionalized Fe3O4@SiO2 core-shell microspheres were dip-coated on the surface of porous materials via a dip-coating process, thereby endowing them with superhydrophobicity. Owing to the hydrophobic interaction between OTS molecules and oil and increased capillary force in the micropores, the resulting superhydrophobic sponge served as a selective oil-sorbent scaffold for absorbing oil from oil-water mixtures, including oil-water suspensions and emulsions. Remarkably, after the recovery of the adsorbed oil via mechanical extrusion, these superhydrophobic materials could be reused multiple times and maintain their oil-water separation efficacy even after 10 oil-water separation cycles.


Assuntos
Poluição por Petróleo , Poliuretanos , Dióxido de Silício , Fenômenos Físicos , Poluição por Petróleo/prevenção & controle , Fenômenos Magnéticos
17.
Curr Allergy Asthma Rep ; 23(6): 299-311, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37166706

RESUMO

PURPOSE OF REVIEW: Burning of petroleum products has been consistently associated with adverse respiratory health effects. Combustion of crude oil, specifically, produces toxic byproducts, but there have been relatively few studies of health effects. Burning of crude oil is increasingly employed as a means of mitigating environmental disasters despite the potential health risks to workers involved in clean-up efforts. Here, we review epidemiological studies of respiratory effects following unique crude oil burning events to (1) characterize respiratory health effects from this nontraditional occupational exposure and (2) identify approaches used to characterize exposures that could be applied to future disaster-related studies. RECENT FINDINGS: We searched PubMed and EMBASE for references from inception to January 30, 2023. We also manually screened references cited in eligible articles. We identified 14 eligible publications. Our review suggests that exposure to crude oil combustion has adverse respiratory effects, including reduced lung function and increased occurrence of respiratory symptoms and disease. However, the evidence is inconsistent, and quality of data varied across studies. While some studies used quantitative, modeled exposure estimates, most used self-reported proxies of exposure. Although disasters involving crude oil combustion are relatively rare, limited evidence suggests that some worker populations may be at risk for respiratory effects from burning exposures in disaster settings. Future studies that use improved exposure assessment methods (e.g., personal monitors, remote sensing data) may help further quantify the respiratory risk from crude oil burning exposures.


Assuntos
Desastres , Exposição Ocupacional , Poluição por Petróleo , Petróleo , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Petróleo/efeitos adversos , Poluição por Petróleo/efeitos adversos , Exposição Ocupacional/efeitos adversos , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/etiologia
18.
Nanotechnology ; 35(10)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064733

RESUMO

The oil spill positioner is capable of real-time monitoring oil films on the sea surface. However, the lack of high-performance power supply methods greatly restricts the application of oil spill positioner. In this research, we design a high-performance self-powered oil spill positioner based on a soft-contact-triboelectric-nanogenerator (SC-TENG). This device achieves soft-contact by attaching rabbit fur to the rotor, which can effectively reduce frictional resistance, quickly transfer charge to the electrode, and improve the durability of the parts. First, we calculate the highest occupied molecular orbital and the lowest unoccupied molecular orbital of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) molecules through first-principles simulations, and compared the ease of electron excitation between the two materials. The results show that the performance of SC-TENG with PVDF as dielectric material is significantly better than that of PTFE. At the same time, this phenomenon has been confirmed by experiments. On the basis of experimental and simulate research on two types of power management circuits, a bridge rectifier circuit with the function of converting alternating current to direct current is selected to realize the self-power supply of the oil spill positioner. Additionally, by optimizing the structure of the SC-TENG and employing a bridge rectifier circuit, the SC-TENG can achieve a maximum open-circuit voltage of 1400 V and a short-circuit current of 3.49µA, which are enough to light up 200 light-emitting diodes and power the oil spill positioner. Finally, we simulate the open-circuit voltage and short-circuit current of the SC-TENG on a six-degree-of-freedom platform and test its durability under real-world ocean wave conditions, all of which show excellent performance. This work develops an efficient wave energy conversion mechanism and successfully realizes the high-performance self-powering of the oil spill positioner, making oil spill monitoring more flexible and reliable.

19.
Environ Sci Technol ; 57(14): 5633-5645, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972473

RESUMO

Microplastics (MPs) and oil pollution are major concerns in oceans. Although their coexistence in oceans and the associated MP-oil-dispersant agglomerates (MODAs) have been reported, limited attention is given to the behavior of the co-contaminants. This study investigated MODA transport in a simulated ocean system and explored related mechanisms under various oil types, salinities, and mineral concentrations. We found that more than 90% of the heavy oil-formed MODAs stayed at the seawater surface, while the light oil-formed MODAs were widely distributed throughout the seawater column. The increased salinity promoted MODAs formed by 7 and 90 µm MPs to transport from the seawater surface to the column. This was elucidated by the Derjaguin-Landau-Verwey-Overbeek theory as more MODAs formed under higher salinities and dispersants kept them stable in the seawater column. Minerals facilitated the sinking of large MP-formed MODAs (e.g., 40 µm) as minerals were adsorbed on the MODA surface, but their impact on small MP-formed MODAs (e.g., 7 µm) was negligible. A MODA-mineral system was proposed to explain their interaction. Rubey's equation was recommended to predict the sinking velocity of MODAs. This study is the first attempt to reveal MODA transport. Findings will contribute to the model development to facilitate their environmental risk evaluation in oceans.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Plásticos , Microplásticos , Poluentes Químicos da Água/análise , Tensoativos , Água do Mar , Minerais
20.
Environ Sci Technol ; 57(25): 9266-9276, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37267462

RESUMO

Due to the sudden nature of oil spills, few controlled studies have documented how oil weathers immediately following accidental release into a natural lake environment. Here, we evaluated the weathering patterns of Cold Lake Winter Blend, a diluted bitumen (dilbit) product, by performing a series of controlled spills into limnocorrals installed in a freshwater lake in Northern Ontario, Canada. Using a regression-based design, we added seven different dilbit volumes, ranging from 1.5 to 180 L, resulting in oil-to-water ratios between 1:71,000 (v/v) and 1:500 (v/v). We monitored changes in the composition of various petroleum hydrocarbons (PHCs), including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and oil biomarkers in dilbit over time, as it naturally weathered for 70 days. Depletion rate constants (kD) of n-alkanes and PAHs ranged from 0.0009 to 0.41 d-1 and 0.0008 to 0.38 d-1, respectively. There was no significant relationship between kD and spill volume, suggesting that spill size did not influence the depletion of petroleum hydrocarbons from the slick. Diagnostic ratios calculated from concentrations of n-alkanes, isoprenoids, and PAHs indicated that evaporation and photooxidation were major processes contributing to dilbit weathering, whereas dissolution and biodegradation were less important. These results demonstrate the usefulness of large scale field studies carried out under realistic environmental conditions to elucidate the role of different weathering processes following a dilbit spill.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos/química , Lagos/química , Alcanos , Ontário , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA