Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 284: 117119, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33906032

RESUMO

The well-known toxicity of conventional chemical oil spill dispersants demands the development of alternative and environmentally friendly dispersant formulations. Therefore, in the present study we have developed a pair of less toxic and green dispersants by combining lactonic sophorolipid (LS) biosurfactant individually with choline myristate and choline oleate ionic liquid surfactants. The aggregation behavior of resulted surfactant blends and their dispersion effectiveness was investigated using the baffled flask test. The introduction of long hydrophobic alkyl chain with unsaturation (attached to choline cation) provided synergistic interactions between the binary surfactant mixtures. The maximum dispersion effectiveness was found to be 78.23% for 80:20 (w/w) lactonic sophorolipid-choline myristate blends, and 81.15% for 70:30 (w/w) lactonic sophorolipid-choline oleate blends at the dispersant-to-oil ratio of 1:25 (v/v). The high dispersion effectiveness of lactonic sophorolipid-choline oleate between two developed blends is attributed to the stronger synergistic interactions between surfactants and slower desorption rate of blend from oil-water interface. The distribution of dispersed oil droplets at several DOR were evaluated and it was observed that oil droplets become smaller with increasing DOR. In addition, the acute toxicity analysis of developed formulations against zebra fish (Danio rerio) confirmed their non-toxic behavior with LC50 values higher than 400 ppm after 96 h. Overall, the proposed new blends/formulations could effectively substitute the toxic and unsafe chemical dispersants.


Assuntos
Líquidos Iônicos , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Carbono , Líquidos Iônicos/toxicidade , Poluição por Petróleo/análise , Tensoativos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
J Hazard Mater ; 416: 126122, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492916

RESUMO

Biosurfactant-based dispersants (BBDs) may be more effective, cost-efficient and environmentally friendly than dispersants currently used for oil spill response. An improved understanding of BBD performance is needed to advance their development and commercial use. In this study, the ability of four BBDs, i.e. sufactins, trehalose lipids, rhamnolipids and exmulsins, alone and as various combinations to disperse Arabian light crude oil and weathered Alaska North Slope crude oil was compared to a widely used commercial oil dispersant (Corexit 9500A). Surfactin and trehalose lipids, which have balanced surface activity/emulsification ability, showed dispersion efficacy comparable to Corexit 9500A. Rhamnolipids (primarily a surface-active agent) and exmulsins (primarily an emulsifier) when used alone had significantly lower efficacy. However, blends of these surfactants had excellent dispersion performance because of synergistic effects. Balanced surface activity and emulsification ability may be key to formulate effective BBDs. Of the BBDs evaluated, surfactins with an effective dispersant-to-oil ratio as low as 1:62.3 and trehalose lipids with high oil affinity, biodegradation rate, and low toxicity characteristics show the most promise for commercial development.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Petróleo/toxicidade , Poluição por Petróleo/análise , Tensoativos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA