Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102162, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724960

RESUMO

Transthyretin (TTR) amyloidosis is associated with tissue deposition of TTR aggregates. TTR aggregation is initiated by dissociation of the native tetramer to form a monomeric intermediate, which locally unfolds and assembles into soluble oligomers and higher-order aggregates. However, a detailed mechanistic understanding requires kinetic and structural characterization of the low population intermediates formed. Here, we show that the monomeric intermediate exchanges with an ensemble of oligomers on the millisecond timescale. This transient and reversible exchange causes broadening of the 19F resonance of a trifluoromethyl probe coupled to the monomeric intermediate at S85C. We show the 19F linewidth and R2 relaxation rate increase with increasing concentration of the oligomer. Furthermore, introduction of 19F probes at additional TTR sites yielded distinct 19F chemical shifts for the TTR tetramer and monomer when the trifluoromethyl probe was attached at S100C, located near the same subunit interface as S85C, but not with probes attached at S46C or E63C, which are distant from any interfaces. The 19F probe at E63C shows that part of the DE loop, which is solvent accessible in the tetramer, becomes more buried in the NMR-visible oligomers. Finally, using backbone amides as probes, we show that parts of the EF helix and H-strand become highly flexible in the otherwise structured monomeric intermediate at acidic pH. We further find that TTR aggregation can be reversed by increasing pH. Taken together, this work provides insights into location-dependent conformational changes in the reversible early steps of a kinetically concerted TTR aggregation pathway.


Assuntos
Amiloidose , Pré-Albumina , Agregados Proteicos , Amiloide/química , Cinética , Pré-Albumina/química , Agregação Patológica de Proteínas , Conformação Proteica
2.
Biophys Chem ; 185: 1-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24295614

RESUMO

The relevance of the C-terminal α helix of the PDZ3 domain of PSD95 in its unfolding process has been explored by achieving the thermodynamic characterization of a construct where the sequence of the nine residues corresponding to such motif has been deleted. Calorimetric traces at neutral pH require the application of a three-state model displaying three different equilibrium processes in which the intermediate state self-associates upon heating, being stable and populated in a wide temperature range. Temperature scans followed by circular dichroism, Fourier transform infrared spectroscopy and dynamic light scattering support the presence of such oligomeric-partially folded species. This study reveals that the deletion of the α3-helix sequence results in a more complex description of the domain unfolding.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Domínios PDZ , Dobramento de Proteína , Termodinâmica , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Modelos Moleculares , Desnaturação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA