Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
SN Comput Sci ; 4(3): 299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37016628

RESUMO

The Worldwide spread of the Omicron lineage variants has now been confirmed. It is crucial to understand the process of cellular life and to discover new drugs need to identify the important proteins in a protein interaction network (PPIN). PPINs are often represented by graphs in bioinformatics, which describe cell processes. There are some proteins that have significant influences on these tissues, and which play a crucial role in regulating them. The discovery of new drugs is aided by the study of significant proteins. These significant proteins can be found by reducing the graph and using graph analysis. Studies examining protein interactions in the Omicron lineage (B.1.1.529) and its variants (BA.5, BA.4, BA.3, BA.2, BA.1.1, BA.1) are not yet available. Studying Omicron has been intended to find a significant protein. 68 nodes represent 68 proteins and 52 edges represent the relationship among the protein in the network. A few centrality measures are computed namely page rank centrality (PRC), degree centrality (DC), closeness centrality (CC), and betweenness centrality (BC) together with node degree and Local clustering coefficient (LCC). We also discover 18 network clusters using Markov clustering. 8 significant proteins (candidate gene of Omicron lineage variants) were detected among the 68 proteins, including AHSG, KCNK1, KCNQ1, MAPT, NR1H4, PSMC2, PTPN11 and, UBE21 which scored the highest among the Omicron proteins. It is found that in the variant of Omicron protein-protein interaction networks, the MAPT protein's impact is the most significant.

2.
Emerg Microbes Infect ; 12(1): 2202281, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37039029

RESUMO

ABSTRACTThe emergence of the Omicron SARS-CoV-2 variant of concern has changed the COVID-19 scenario as this variant is characterized by high transmissibility and immune evasion ability. To evaluate the impact of this variant on the Canary Islands (Spain) population, we determined the reinfection rates and disease severity associated with the Omicron sublineages and the previously circulating variants of concern. We performed a retrospective observational study on 21,745 SARS-CoV-2 viral genomes collected from December 2020 to July 2022 in the Canary Islands (Spain). We compared the reinfection rates between lineages using pairwise proportion and Fisher's exact tests. To assess disease severity, we studied the association of Alpha, Delta, BA.1, BA.2, BA.5, and other risk factors on 28-day hospital mortality using logistic regression and Cox proportional hazard models. We observed 127 bona fide reinfection cases throughout the study period. We found that BA.5 had the highest reinfection rate compared to other lineages (vs. Delta p = 2.89 × 10-25; vs. BA.1 p = 5.17 × 10-11; vs. BA.2 p = 0.002). Among the 1,094 hospitalized patients, multivariate logistic regression showed that Alpha (Odds Ratio [OR] = 0.45, 95% Confidence Interval [CI] = 0.23-0.87, p = 0.02), BA.2 (OR = 0.38, 95% CI = 0.22-0.63, p = 1.91 × 10-4), and BA.5 (OR = 0.30, 95% CI = 0.16-0.55, p = 1.05 × 10-4) had lower 28-day hospital mortality compared to Delta. These results were confirmed by using Cox proportional hazard models. Omicron lineages, and in particular BA.5, were associated with higher reinfection rates and lower disease severity (28-day hospital mortality) than previously circulating variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Espanha , Reinfecção , Gravidade do Paciente
3.
Open Forum Infect Dis ; 9(12): ofac564, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36483184

RESUMO

Lower viral loads were observed in the upper respiratory tract of patients infected with BA.1, whereas patients infected with BA.2 and BA.5 had comparable viral loads to those seen with Alpha or Delta. This suggests that viral loads are likely not responsible for the increased transmission of the Omicron lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA