RESUMO
A rapid method is described for the preparation of a highly uniform and sensitive SERS substrate by an improved 'drop-and-dry' method. Gold nanobipyramids (Au NBPs) were prepared inside the nanoholes (nanowalls) of anodic aluminum oxide (AAO) templates with a typically 5-µm nanohole depth. The SERS substrate can be prepared by this method within 40 s and on large scale. The SERS signals obtained with this Au NBPs-AAO substrate is stronger by four-orders of magnitude compared to conventional a silicon wafer substrate. The SERS signal for dopamine (DA; measured at 1311 cm-1) is found to be enhanced by a factor of 2.2 × 108. The response to DA extends from 10 nM to 0.1 mM, and the limit of detection is 6.5 nM (at S/N = 3). The assay was applied to the determination of DA in spiked human serum. Graphical abstract Schematic presentation of a highly active and uniform 3-dimensional substrate composed of gold nanobipyramids and anodic aluminum oxide (Au NBP/AAO). It was used for on-spot sensing of dopamine.
Assuntos
Dopamina/sangue , Nanopartículas Metálicas/química , Óxido de Alumínio/química , Ouro/química , Humanos , Limite de Detecção , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Análise Espectral Raman/métodosRESUMO
Pathogenic disease is an important factor affecting rice growth, yield and quality, and the development and application of rapid diagnostic methods will contribute to the prevention and control of rice disease. Herein, we developed a novel protospacer adjacent motif (PAM)-free loop-mediated isothermal amplification (LAMP) assisted CRISPR/Cas12a cleavage (Cas-PfLAMP) assay for detection of three rice pathogens; Xanthomonas oryzae pv. Oryzae (XOO), rice stripe virus (RSV), and rice black-streaked dwarf virus (RBSDV). The Cas-PfLAMP assay showed high specificity due to doubly specific recognition of LAMP primer sets and FnCas12a/sgRNA, and high sensitivity down to 9 or 3 copies due to LAMP amplification and CRISPR/Cas12a trans cleavage activity. Furthermore, a visual on-spot Cas-PfLAMP platform was established for detection of rice pathogens by combining solid-phase nucleic acid extraction and a lateral flow strip (LFS) test. Analysis of rice leaf field samples confirmed the impressive performance of the Cas-PfLAMP platform, demonstrating its suitability for rapid (â¼50 min) on-spot detection of rice diseases. The assay could also be extended to detection of other plant diseases, and other nucleic acid field tests.