Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.052
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9253-9261, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037287

RESUMO

Ingenious microstructure construction and appropriate composition selection are effective strategies for achieving enhanced performance of photothermal materials. Herein, a broccoli-like hierarchical nickel black@graphene (Ni@Gr) membrane for solar-driven desalination was prepared by a one-step electrochemical method, which was carried out simultaneously with the electrochemical exfoliation of graphene and the co-deposition of Ni@Gr material. The bionic hierarchical structure and the chemical composition of the Ni@Gr membrane increased the sunlight absorption (90.36%) by the light-trapping effect and the introduction of graphene. The Ni@Gr membrane achieved high evaporation rates of 2.05 and 1.16 kg m-2 h-1 under simulated (1 sun) and outdoor sunlight conditions, respectively. The superhydrophilicity and the hierarchical structure of the Ni@Gr membrane jointly reduced the evaporation enthalpy (1343.6 kJ/kg), which was beneficial to break the theoretical limit of the evaporation rate (1.47 kg m-2 h-1). This work encourages the application of bionic metal-carbon composite photothermal materials in solar water evaporation.

2.
Nano Lett ; 24(1): 82-88, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109843

RESUMO

The ferroelectric semiconductor α-SnTe has been regarded as a topological crystalline insulator, and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the past decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of α-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about Tc ≈ 110 K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution of local dipoles to the phase transition that requires the presence of fluctuating dipoles above Tc. We conclude that no topological surface state can occur under these conditions at the (111) surface of SnTe, at odds with recent literature.

3.
Small ; 20(1): e2305325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641191

RESUMO

The one-step assembly of metal-phenolic networks (MPNs) onto particle templates can enable the facile, rapid, and robust construction of hollow microcapsules. However, the required template removal step may affect the refilling of functional species in the hollow interior space or the in situ encapsulation of guest molecules during the formation of the shells. Herein, a simple strategy for the one-step generation of functional MPNs microcapsules is proposed. This method uses bovine serum albumin microbubbles (BSA MBs) as soft templates and carriers, enabling the efficient pre-encapsulation of guest species by leveraging the coordination assembly of tannic acid (TA) and FeIII ions. The addition of TA and FeIII induces a change in the protein conformation of BSA MBs and produces semipermeable capsule shells, which allow gas to escape from the MBs without template removal. The MBs-templated strategy can produce highly biocompatible capsules with controllable structure and size, and it is applicable to produce other MPNs systems like BSA-TA-CuII and BSA-TA-NiII . Finally, those MBs-templated MPNs capsules can be further functionalized or modified for the loading of magnetic nanoparticles and the pre-encapsulation of model molecules through covalence or physical adsorption, exhibiting great promise in biomedical applications.

4.
Small ; : e2403260, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032136

RESUMO

Conventional fog collection efficiency is subject to the inherent inefficiencies of its three constituent steps: fog capture, coalescence, and transportation. This study presents a liquid bridge synergistic fog collection system (LSFCS) by synergistically utilizing a liquid bridge and interconnected porous superhydrophilic structures (IPHS). The results indicate that the introduction of liquid bridge not only greatly accelerates water droplet transportation, but also facilitates the IPHS in maintaining rough structures that realize stable and efficient fog capture. During fog collection, the lower section of the IPHS is covered by a water layer, however due to the effect of the liquid bridge, the upper section protrudes out, while covered by a connective thin water film that does not obscure the microstructures of the upper section. Under these conditions, a one-step fog collection mode is realized. Once captured by the IPHS, fog droplets immediately coalesce with the water film, and are simultaneously transported into a container under the effect of the liquid bridge. The LSFCS achieves a collection efficiency of 6.5 kg m-2 h-1, 2.3 times that of a system without a liquid bridge. This study offers insight on improving fog collection efficiency, and holds promise for condensation water collection or droplet manipulation.

5.
Small ; 20(11): e2306504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926769

RESUMO

Due to their unique advantages, single atoms and clusters of transition metals are expected to achieve a breakthrough in catalytic activity, but large-scale production of active materials remains a challenge. In this work, a simple solvent-free one-step annealing method is developed and applied to construct diatomic and cluster active sites in activated carbon by utilizing the strong anchoring ability of phenanthroline to metal ions, which can be scaled for mass productions. Benefiting from the synergy between the different metals, the obtained sub-nano-bimetallic atom-cluster catalysts (FeNiAC -NC) exhibit high oxygen reduction reactions (ORR) activity (E1/2 = 0.936 V vs. RHE) and a small ORR/oxygen evolution reaction (OER) potential gap of only 0.594 V. An in-house pouch Zn-air battery is assembled using an FeNiAC -NC catalyst, which demonstrates a stability of 1000 h, outperforming previous reports. The existence of clusters and their effects on catalytic activity is analyzed by density functional theory calculations to reveal the chemistry of nano-bimetallic atom-cluster catalysts.

6.
Small ; 20(12): e2307259, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948421

RESUMO

As one of the important directions of solar energy utilization, the construction of composite photothermal phase change materials (PCM) with reasonable network support and low leakage in the simple method is important to solve the transient availability of solar energy and achieve long-lasting energy output. Here, a multifunctional silylated bacterial cellulose (BC)/hydroxylated carbon nanotube (HCNT)/polyethylene glycol (PEG) (SBTP) photothermal film-based PCM with cross-linked network structure is prepared by simple one-step synthesis. The formation of the cross-linked network structure achieves the enhancement of BC support network, prominent dispersion of HCNT and the direct introduction and perfect interlocking of PEG. Therefore, the optimal SBTP film exhibits high thermal enthalpy of 145.1 J g-1, enthalpy efficiency of over 94%, robust shape stability and low leakage of <1.2%. It also displays high photothermal conversion of over 80 °C, photothermal storage of 394 s g-1 and excellent stability. Thus, it can demonstrate a maximum output voltage of 423 mV and high power density of 30.26 W m-2 under three solar irradiations when applied in the solar-thermal-electric energy conversion field. Meanwhile, it also can apply in the thermal management of solar cell and light-emitting diode (LED) chip, and convert the waste heat into electricity, demonstrating multi-scene application capability.

7.
Small ; 20(30): e2312265, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38415951

RESUMO

The preparation of perovskite components (PbI2 and SnI2) using waste materials is of great significance for the commercialization of perovskite solar cells (PSCs). However, this goal is difficult to achieve due to the purity of the recovered products and the easy oxidation of Sn2+. Here, a simple one-step synthetic process to convert waste Sn-Pb solder into SnI2/PbI2 and then applied as-prepared SnI2/PbI2 to PSCs for high additional value is adopted. During fabrication, Sn-Pb waste solder is also employed to serve as a reducing agent to reduce the Sn4+ in Sn-Pb mixed narrow perovskite precursor and hence remove the deep trap states in perovskite. The target PSCs achieved an efficiency of 21.04%, which is better than the efficiency of the device with commercial SnI2/PbI2 (20.10%). Meanwhile, the target PSC maintained an initial efficiency of 80% even after 800 h under continuous illumination, which is significantly better than commercial devices. In addition, the method achieved a recovery rate of 90.12% for Sn-Pb waste solder, with a lab-grade purity (over 99.8%) for SnI2/PbI2, and the cost of perovskite active layer reduced to 39.81% through this recycling strategy through calculation.

8.
Small ; : e2402236, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970543

RESUMO

A new methodological design is proposed for carbon dots (CDs)-based crystallization-induced phosphorescence (CIP) materials via one-step self-assembled packaging controlled by NH4 +. O-phenylenediamine (o-PD) as a nitrogen/carbon source and the ammonium salts as oxidants are used to obtain CDs supramolecular crystals with a well-defined staircase-like morphology, pink fluorescence and ultralong green room-temperature phosphorescence (RTP) (733.56 ms) that is the first highest value for CDs-based CIP materials using pure nitrogen/carbon source by one-step packaging. Wherein, NH4 + and o-PD-derived oxidative polymers are prerequisites for self-assembled crystallization so as to receive the ultralong RTP. Density functional theory calculation indicates that NH4 + tends to anchor to the dimer on the surface state of CDs and guides CDs to cross-arrange in an X-type stacking mode, leading to the spatially separated frontier orbitals and the through-space charge transfer (TSCT) excited state in turn. Such a self-assembled mode contributes to both the small singlet-triplet energy gap (ΔEST) and the fast inter-system crossing (ISC) process that is directly related to ultralong RTP. This work not only proposes a new strategy to prepare CDs-based CIP materials in one step but also reveals the potential for the self-assembled behavior controlled by NH4 +.

9.
Chemistry ; 30(24): e202304287, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38380560

RESUMO

Aqueous zinc ion batteries have been extensively researched due to their distinctive advantages such as low cost and high safety. Vanadium oxides are important cathode materials, however, poor cycle life caused by vanadium dissolution limits their application. Recent studies show that the lattice NH4 + in vanadium oxides can act as a pillar to enhance structural stability and play a crucial role in improving its cycling stability. Nevertheless, there is still a lack of research on the effect of the lattice NH4 + content on structural evolution and electrochemical performance. Herein, we synthesize vanadium oxides with different contents of lattice NH4 + by a one-step hydrothermal reaction. The vanadium oxides with lattice NH4 + exhibit high initial capacity, as well as good cycling stability and rate performance compared to bare vanadium oxide. Combined with electrochemical analyses, ex-situ structural characterizations, and in-situ X-ray diffraction tests, we reveal that the lattice NH4 + content plays a positive role in vanadium oxides' structural stability and cation diffusion kinetics. This work presents a direction for designing high-performance vanadium cathodes for aqueous zinc ion batteries.

10.
Anal Biochem ; 692: 115576, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38796118

RESUMO

Regular monitoring of Norovirus presence in environmental and food samples is crucial due to its high transmission rates and outbreak potential. For detecting Norovirus GI, reverse transcription qPCR method is commonly used, but its sensitivity can be affected by assay performance. This study shows significantly reduced assay performance in digital PCR or qPCR when using primers targeting Norovirus GI genome 5291-5319 (NC_001959), located on the hairpin of the predicted RNA structure. It is highly recommended to avoid this region in commercial kit development or diagnosis to minimizing potential risk of false negatives.


Assuntos
Norovirus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Norovirus/genética , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , RNA Viral/genética , RNA Viral/análise , Humanos , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/virologia
11.
Reprod Biomed Online ; 48(4): 103731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359734

RESUMO

RESEARCH QUESTION: Do embryos warmed using a one-step rehydration protocol with a more efficient workflow result in comparable pregnancy rates to the standard multi-step rehydration protocol? DESIGN: A retrospective cohort study of 3439 frozen embryo transfers (FET). Clinical outcomes of 833 FETs using a one-step rehydration protocol were reviewed and compared with results from the control group (2606 FETs using standard multi-step rehydration protocol). Primary outcome was ongoing pregnancy rate. Secondary outcomes were survival, positive pregnancy, clinical pregnancy, implantation and miscarriage rates. RESULTS: Survival rates were identical between the two groups (99.5%). Clinical pregnancy rate was 63.0% in the one-step warming protocol, comparable to 59.9% in the multi-step rehydration protocol. A significant increase was observed in the ongoing pregnancy rate with 60.4% in the one-step rehydration versus 55.4% in the multi-step rehydration group (P = 0.011); implantation rate was 63.6% versus 57.0% (P = 0.0005). The miscarriage rate of 4.0% in the one-step rehydration protocol was significantly lower compared with 7.6% in the multi-step rehydration protocol (P = 0.0001). Comparable outcomes persisted even when the analysis was extended to embryos that had and had not undergone preimplantation genetic testing (PGT), as well as day of development of the blastocysts. When controlling for variables of age, PGT, blastocyst development day and embryo expansion, rapid warming significantly increased chances of an ongoing pregnancy (adjusted OR 1.264, 95% CI 1.076 to 1.484). CONCLUSION: A one-step rehydration protocol resulted in identical survival rates and improved ongoing pregnancy rates compared with the multi-step rehydration technique.


Assuntos
Aborto Espontâneo , Resultado da Gravidez , Feminino , Gravidez , Humanos , Estudos Retrospectivos , Aborto Espontâneo/epidemiologia , Criopreservação/métodos , Taxa de Gravidez , Blastocisto
12.
Biometrics ; 80(1)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38497824

RESUMO

The semiparametric Cox proportional hazards model, together with the partial likelihood principle, has been widely used to study the effects of potentially time-dependent covariates on a possibly censored event time. We propose a computationally efficient method for fitting the Cox model to big data involving millions of study subjects. Specifically, we perform maximum partial likelihood estimation on a small subset of the whole data and improve the initial estimator by incorporating the remaining data through one-step estimation with estimated efficient score functions. We show that the final estimator has the same asymptotic distribution as the conventional maximum partial likelihood estimator using the whole dataset but requires only a small fraction of computation time. We demonstrate the usefulness of the proposed method through extensive simulation studies and an application to the UK Biobank data.


Assuntos
Big Data , Biobanco do Reino Unido , Humanos , Modelos de Riscos Proporcionais , Probabilidade , Simulação por Computador
13.
BMC Infect Dis ; 24(1): 679, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982392

RESUMO

BACKGROUND: There is an increasing disease trend for SARS-COV-2, so need a quick and affordable diagnostic method. It should be highly accurate and save costs compared to other methods. The purpose of this research is to achieve these goals. METHODS: This study analyzed 342 samples using TaqMan One-Step RT-qPCR and fast One-Step RT-LAMP (Reverse Transcriptase Loop-Mediated Isothermal Amplification). The One-Step LAMP assay was conducted to assess the sensitivity and specificity. RESULTS: The research reported positive samples using two different methods. In the RT-LAMP method, saliva had 92 positive samples (26.9%) and 250 negative samples (73.09%) and nasopharynx had 94 positive samples (27.4%) and 248 negative samples (72.51%). In the RT-qPCR method, saliva had 86 positive samples (25.1%) and 256 negative samples (74.8%) and nasopharynx had 93 positive samples (27.1%) and 249 negative samples (72.8%). The agreement between the two tests in saliva and nasopharynx samples was 93% and 94% respectively, based on Cohen's kappa coefficient (κ) (P < 0.001). The rate of sensitivity in this technique was reported at a dilution of 1 × 101 and 100% specificity. CONCLUSIONS: Based on the results of the study the One-Step LAMP assay has multiple advantages. These include simplicity, cost-effectiveness, high sensitivity, and specificity. The One-Step LAMP assay shows promise as a diagnostic tool. It can help manage disease outbreaks, ensure prompt treatment, and safeguard public health by providing rapid, easy-to-use testing.


Assuntos
COVID-19 , Técnicas de Diagnóstico Molecular , Nasofaringe , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Saliva , Sensibilidade e Especificidade , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Nasofaringe/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Saliva/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Técnicas de Diagnóstico Molecular/métodos , Teste de Ácido Nucleico para COVID-19/métodos , RNA Viral/genética , RNA Viral/análise
14.
Environ Sci Technol ; 58(22): 9636-9645, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770702

RESUMO

Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the trans-cleavage activity of Cas12a and recombinase polymerase amplification (RPA). This efficient method matches the sensitivity and specificity of qPCR and requires no complex equipment. The results show a strong correlation between the prevalence of four ARG markers (ARGs: sul1, qnrA-1, mcr-1, and class 1 integrons: intl1) in tap water, human urine, farm wastewater, hospital wastewater, municipal wastewater treatment plants (WWTPs), and proximate natural aquatic ecosystems, indicating the circulation of ARGs within the urban water cycle. Through monitoring the ARG markers in 18 WWTPs in 9 cities across China during both peak and declining stages of the COVID epidemic, we found an increased detection frequency of mcr-1 and qnrA-1 in wastewater during peak periods. The ARG detection method developed in this work may offer a useful tool for promoting a sustainable urban water cycle.


Assuntos
Resistência Microbiana a Medicamentos , Resistência Microbiana a Medicamentos/genética , Águas Residuárias , Humanos , Monitoramento Ambiental/métodos , Cidades , China , COVID-19
15.
J Fluoresc ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421599

RESUMO

Intracellular copper ion (Cu2+) is irreplaceable and essential in regulation of physiological and biological processes, while excessive copper from bioaccumulation may cause potential hazards to human health. Hence, effective and sensitive recognition is urgently significant to prevent over-intake of copper. In this work, a novel highly sensitive and green carbon quantum dots (Green-CQDs) were synthesized by a low-cost and facile one-step microwave auxiliary method, which utilized gallic acid, carbamide and PEG400 as carbon source, nitrogen source and surface passivation agent, respectively. The decreased fluorescence illustrated excellent linear relationship with the increasing of Cu2+ concentration in a wide range. Substantial surface amino and hydroxyl group introduced by PEG400 significantly improved selectivity and sensitivity of Green-CQDs. The surface amino chelation mechanism and fluorescence internal filtration effect were demonstrated by the restored fluorescence after addition of EDTA. Crucially, the nanosensor illustrated good cell permeability, high biocompatibility and recovery rate, significantly practical application in fluorescent imaging and biosensing of intracellular Cu2+ in HepG-2 cells, which revealed a potential and promising biological applications in early diagnosis and treatment of copper ion related disease.

16.
Anal Bioanal Chem ; 416(10): 2411-2422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459191

RESUMO

Point-of-care sensors targeting blood marker analysis must be designed to function with very small volumes since acquiring a blood sample through a simple, mostly pain-free finger prick dramatically limits the sample size and comforts the patient. Therefore, we explored the potential of converting a conventional lateral flow assay (LFA) for a significant biomarker into a self-contained and compact polymer channel-based LFA to minimize the sample volume while maintaining the analytical merits. Our primary objective was to eliminate the use of sample-absorbing fleece and membrane materials commonly present in LFAs. Simultaneously, we concentrated on developing a ready-to-deploy one-step LFA format, characterized by dried reagents, facilitating automation and precise sample transport through a pump control system. We targeted the detection of the heart failure biomarker NT-proBNP in only 15 µL human whole blood and therefore implemented strategies that ensure highly sensitive detection. The biosensor combines streptavidin-functionalized magnetic beads (MNPs) as a 3D detection zone and fluorescence nanoparticles as signal labels in a sandwich-based immunoassay. Compared to the currently commercialized LFA, our biosensor demonstrates comparable analytical performance with only a tenth of the sample volume. With a detection limit of 43.1 pg∙mL-1 and a mean error of 18% (n ≥ 3), the biosensor offers high sensitivity and accuracy. The integration of all-dried long-term stable reagents further enhances the convenience and stability of the biosensor. This lateral flow channel platform represents a promising advancement in point-of-care diagnostics for heart failure biomarkers, offering a user-friendly and sensitive platform for rapid and reliable testing with low finger-prick blood sample volumes.


Assuntos
Insuficiência Cardíaca , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Humanos , Limite de Detecção , Imunoensaio , Insuficiência Cardíaca/diagnóstico , Biomarcadores/análise , Fenômenos Magnéticos
17.
Acta Obstet Gynecol Scand ; 103(1): 93-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968904

RESUMO

INTRODUCTION: The clinical management of placenta accreta spectrum (PAS) depends on placental topography and vascular involvement. Our aim was to determine whether transabdominal and transvaginal ultrasound signs can predict PAS management. MATERIAL AND METHODS: We conducted a retrospective cohort study of consecutive prenatally suspected PAS cases in a single tertiary-care PAS center between January 2021 and July 2022. When PAS was confirmed during surgery, abdominal and transvaginal ultrasound scans were analyzed in relation to PAS management. The preferred surgical approach of PAS was one-step conservative surgery (OSCS). Massive blood loss and PAS topography in the lower bladder trigone necessitated cesarean hysterectomy. Transvaginal ultrasound-diagnosed intracervical hypervascularity was split into three categories based on their quantity. Anatomically, the internal cervical os is located at the level of the bladder trigone and was used as landmark for upper and lower bladder trigone PAS. RESULTS: Ninety-one women underwent OSCS and 35 women underwent cesarean hysterectomy (total 126 women with PAS). Abdominal and transvaginal ultrasound features differed significantly between women that underwent OSCS and cesarean hysterectomy: decreased myometrial thickness (<1 mm), 82.4% vs. 100%, p = 0.006; placental bulge, 51.6% vs. 94.3%, p < 0.001; bladder wall interruption, 62.6% vs. 97.1%, p < 0.001; abnormal placental lacunae, 75.8% vs. 100%, p < 0.001; hypervascularity (large lacunae feeding vessels, 57.8% vs. 94.6%, p < 0.001; parametrial hypervascularity, 15.4% vs. 60%, p < 0.001; the rail sign, 6.6% vs. 28.6%, p = 0.003; three-dimensional Doppler intra-placental hypervascularity, 81.3% vs. 100%, p < 0.001; intracervical hypervascularity 60.4% vs. 94.3%, p < 0.001); and cervical length 2.5 ± 0.94 vs. 2.2 ± 0.73, p = 0.038. Other ultrasound signs were not significantly different. The results of multivariable logistic regression showed placental bulge (odds ratio [OR] 9.3; 95% CI 1.9-44.3; p = 0.005), parametrial hypervascularity (OR 4.1; 95% CI 1.541-11.085; p = 0.005), and intracervical hypervascularity (OR 9.2; 95% CI 1.905-44.056; p = 0.006) were weak predictors of OSCS. Intracervical hypervascularity Grade 1 (vascularity <50% of cervical tissue) was more present in OSCS than higher gradings two and three (91% vs. 27.6% vs. 14.3%; p < 0.001). CONCLUSIONS: Cesarean hysterectomy is associated with the PAS signs of placental bulge and Grade 2 and 3 intracervical hypervascularity. OSCS is associated with intracervical hypervascularity Grade 1 on transvaginal ultrasound. Prospective validation is required to formulate predictors for PAS management.


Assuntos
Placenta Acreta , Placenta Prévia , Gravidez , Feminino , Humanos , Placenta/diagnóstico por imagem , Placenta Acreta/diagnóstico por imagem , Placenta Acreta/cirurgia , Estudos Retrospectivos , Ultrassonografia , Miométrio/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos
18.
Foodborne Pathog Dis ; 21(7): 458-466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38551156

RESUMO

Vibrio vulnificus is a hazardous foodborne pathogen responsible for approximately 95% of seafood-related deaths. This highlights the urgent requirement for specialized detection tools to be developed and used by food enterprises and food safety authorities. The DETECTR (DNA endonuclease targeted CRISPR trans reporter) system that combines CRISPR/Cas and recombinase polymerase amplification (RPA) has been utilized to develop a molecular detection assay for V. vulnificus. However, because the incompatibility between RPA and Cas12a cleavage has not been addressed, it is a two-step assay that lacks convenience and presents contamination risk. Here, we developed a one-step RPA-CRISPR assay for V. vulnificus using a special crRNA targeting a sequence with a suboptimal protospacer adjacent motif (PAM). The entire assay, conducted at 37°C, takes only 40-60 min, yields results visualized under blue light, and exhibits exceptional specificity and sensitivity (detecting 4 pathogen genome copies per reaction). This study offers a valuable tool for detecting V. vulnificus, aiding in foodborne infection prevention, and exemplifies one-step RPA-CRISPR assays managing Cas-cleavage activity through PAM adjustments.


Assuntos
Sistemas CRISPR-Cas , Vibrio vulnificus , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/genética , Microbiologia de Alimentos , Alimentos Marinhos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Recombinases/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sensibilidade e Especificidade
19.
Mikrochim Acta ; 191(6): 309, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714599

RESUMO

Copper-doped carbon dots and aminated carbon nanotubes (Cu-CDs/NH2-CNTs) nanocomposites were synthesized by a one-step growth method, and the composites were characterized for their performance. An electrochemical sensor for sensitive detection of bisphenol A (BPA) was developed for using Cu-CDs/NH2-CNTs nanocomposites modified with glassy carbon electrodes (GCE). The sensor exhibited an excellent electrochemical response to BPA in 0.2 M PBS (pH 7.0) under optimally selected conditions. The linear range of the sensor for BPA detection was 0.5-160 µM, and the detection limit (S/N = 3) was 0.13 µM. Moreover, the sensor has good interference immunity, stability and reproducibility. In addition, the feasibility of the practical application of the sensor was demonstrated by the detection of BPA in bottled drinking water and Liu Yang River water.


Assuntos
Compostos Benzidrílicos , Cobre , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Nanotubos de Carbono , Fenóis , Poluentes Químicos da Água , Compostos Benzidrílicos/análise , Fenóis/análise , Fenóis/química , Nanotubos de Carbono/química , Cobre/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Poluentes Químicos da Água/análise , Água Potável/análise , Pontos Quânticos/química , Carbono/química , Rios/química
20.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001026

RESUMO

In the realm of electrochemical nitrite detection, the potent oxidizing nature of nitrite typically necessitates operation at high detection potentials. However, this study introduces a novel approach to address this challenge by developing a highly sensitive electrochemical sensor with a low reduction detection potential. Specifically, a copper metal nanosheet/carbon paper sensitive electrode (Cu/CP) was fabricated using a one-step electrodeposition method, leveraging the catalytic reduction properties of copper's high occupancy d-orbital. The Cu/CP sensor exhibited remarkable performance in nitrite detection, featuring a low detection potential of -0.05 V vs. Hg/HgO, a wide linear range of 10~1000 µM, an impressive detection limit of 0.079 µM (S/N = 3), and a high sensitivity of 2140 µA mM-1cm-2. These findings underscore the efficacy of electrochemical nitrite detection through catalytic reduction as a means to reduce the operational voltage of the sensor. By showcasing the successful implementation of this strategy, this work sets a valuable precedent for the advancement of electrochemical low-potential nitrite detection methodologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA