Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
J Virol ; 97(7): e0013523, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338377

RESUMO

The development of effective and flexible vaccine platforms is a major public health challenge, especially in the context of influenza vaccines that have to be renewed every year. Adenoviruses (AdVs) are easy to produce and have a good safety and efficacy profile when administered orally, as demonstrated by the long-term use of oral AdV-4 and -7 vaccines in the U.S. military. These viruses therefore appear to be the ideal backbone for the development of oral replicating vector vaccines. However, research into these vaccines is limited by the ineffectiveness of human AdV replication in laboratory animals. The use of mouse AdV type 1 (MAV-1) in its natural host allows infection to be studied under replicating conditions. Here, we orally vaccinated mice with a MAV-1 vector expressing influenza hemagglutinin (HA) to assess the protection conferred against an intranasal challenge of influenza. We showed that a single oral immunization with this vaccine generates influenza-specific and -neutralizing antibodies and completely protects mice against clinical signs and viral replication, similar to traditional inactivated vaccines. IMPORTANCE Given the constant threat of pandemics and the need for annual vaccination against influenza and possibly emerging agents such as SARS-CoV-2, new types of vaccines that are easier to administer and therefore more widely accepted are a critical public health need. Here, using a relevant animal model, we have shown that replicative oral AdV vaccine vectors can help make vaccination against major respiratory diseases more available, better accepted, and therefore more effective. These results could be of major importance in the coming years in the fight against seasonal or emerging respiratory diseases such as COVID-19.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Camundongos , Animais , Adenoviridae/genética , Influenza Humana/prevenção & controle , Anticorpos Antivirais , SARS-CoV-2 , Imunização , Vacinação/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
2.
Fish Shellfish Immunol ; 151: 109701, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878911

RESUMO

In the field of aquaculture, the enhancement of animal health and disease prevention is progressively being tackled using alternatives to antibiotics, including vaccines and probiotics. This study was designed to evaluate the potential of a recombinant Bacillus methylotrophicus, engineered to express the outer membrane channel protein TolC of Aeromonas hydrophila AH3 and the green fluorescent protein GFP, as an oral vaccine. Initially, the genes encoding tolC and GFP were cloned into a prokaryotic expression system, and anti-TolC mouse antiserum was generated. Subsequently, the tolC gene was subcloned into a modified pMDGFP plasmid, which was transformed into B. methylotrophicus WM-1 for protein expression. The recombinant B. methylotrophicus BmT was then administered to grass carp via co-feeding, and its efficacy as an oral vaccine was assessed. Our findings demonstrated successful expression of the 55 kDa TolC and 28 kDa GFP proteins, and the preparation of polyclonal antibodies with high specificity. The BmT exhibited stable expression of the GFP-TolC fusion protein and excellent genetic stability. Following oral immunization, significant elevations were observed in serum-specific IgM levels and the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in grass carp. Concurrently, significant upregulation of immune-related genes, including IFN-I, IL-10, IL-1ß, TNF-α, and IgT, was noted in the intestines, head kidney, and spleen of the grass carp. Colonization tests further revealed that the BmT persisted in the gut of immunized fish even after a fasting period of 7 days. Notably, oral administration of BmT enhanced the survival rate of grass carp following A. hydrophila infection. These results suggest that the oral BmT vaccine developed in this study holds promise for future applications in aquaculture.


Assuntos
Aeromonas hydrophila , Vacinas Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Carpas/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Aeromonas hydrophila/imunologia , Administração Oral , Vacinação/veterinária , Bacillus , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética
3.
Fish Shellfish Immunol ; 145: 109364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199264

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.


Assuntos
Bass , Doenças dos Peixes , Rhabdoviridae , Animais , Saccharomyces cerevisiae , Vacinação , Proteínas Fúngicas , Vacinas Sintéticas
4.
Appl Microbiol Biotechnol ; 108(1): 397, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922350

RESUMO

Functional M cells are differentiated by receptor activator of NF-κB ligand (RANKL) and capture of luminal antigens to initiate immune responses. We aimed to use postbiotic-based recombinant chicken RANKL (cRANKL) to promote M cell differentiation and test the efficacy of oral vaccines. Chicks were divided into three groups that were administered phosphate-buffered saline (PBS), cell extracts of wild-type Lactococcus lactis subsp. lactis IL1403 (WT_CE), or cell extracts of recombinant L. lactis expressing cRANKL (cRANKL_CE). The expression of the M cell marker was measured, and the gut microbiome was profiled. The efficiency of the infectious bursal disease (IBD) vaccine was tested after 12 consecutive days of administering cRANKL_CE. The chickens that were administered cRANKL_CE (p = 0.038) had significantly higher Annexin A5 (ANXA5) mRNA expression levels than those in the PBS group (PBS vs. WT_CE, p = 0.657). In the gut microbiome analysis, no significant changes were observed. However, the relative abundance of Escherichia-Shigella was negatively correlated (r = - 0.43, p = 0.019) with ANXA5 mRNA expression in Peyer's patches. cRANKL_CE/IBD (p = 0.018) had significantly higher IBD-specific faecal IgA levels than PBS/IBD (PBS/IBD vs. WT_CE/IBD, p = 0.217). Postbiotic-based recombinant cRANKL effectively improved the expression of M cell markers and the efficiency of oral vaccines. No significant changes were observed in the gut microbiome after administration of postbiotic-based recombinant cRANKL. This strategy can be used for the development of feed additives and adjuvants. KEY POINTS: • Postbiotic-based recombinant cRANKL enhanced the expression of ANXA5 in chicken. • The relative abundance of Escherichia-Shigella was negatively correlated with ANXA5 expression. • Postbiotic-based recombinant cRANKL effectively improved the efficiency of oral vaccine.


Assuntos
Galinhas , Microbioma Gastrointestinal , Lactococcus lactis , Ligante RANK , Proteínas Recombinantes , Animais , Galinhas/imunologia , Administração Oral , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/imunologia , Ligante RANK/imunologia , Ligante RANK/genética , Ligante RANK/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/administração & dosagem , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Vírus da Doença Infecciosa da Bursa/imunologia , Vírus da Doença Infecciosa da Bursa/genética , Diferenciação Celular , Nódulos Linfáticos Agregados/imunologia
5.
Appl Microbiol Biotechnol ; 108(1): 248, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430229

RESUMO

Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly infectious disease, resulting in substantial economic losses in the pig industry. Given that PEDV primarily infects the mucosal surfaces of the intestinal tract, it is crucial to improve the mucosal immunity to prevent viral invasion. Lactic acid bacteria (LAB) oral vaccines offer unique advantages and potential applications in combatting mucosal infectious diseases, making them an ideal approach for controlling PED outbreaks. However, traditional LAB oral vaccines use plasmids for exogenous protein expression and antibiotic genes as selection markers. Antibiotic genes can be diffused through transposition, transfer, or homologous recombination, resulting in the generation of drug-resistant strains. To overcome these issues, genome-editing technology has been developed to achieve gene expression in LAB genomes. In this study, we used the CRISPR-NCas9 system to integrate the PEDV S1 gene into the genome of alanine racemase-deficient Lactobacillus paracasei △Alr HLJ-27 (L. paracasei △Alr HLJ-27) at the thymidylate synthase (thyA) site, generating a strain, S1/△Alr HLJ-27. We conducted immunization assays in mice and piglets to evaluate the level of immune response and evaluated its protective effect against PEDV through challenge tests in piglets. Oral administration of the strain S1/△Alr HLJ-27 in mice and piglets elicited mucosal, humoral, and cellular immune responses. The strain also exhibited a certain level of resistance against PEDV infection in piglets. These results demonstrate the potential of S1/△Alr HLJ-27 as an oral vaccine candidate for PEDV control. KEY POINTS: • A strain S1/△Alr HLJ-27 was constructed as the candidate for an oral vaccine. • Immunogenicity response and challenge test was carried out to analyze the ability of the strain. • The strain S1/△Alr HLJ-27 could provide protection for piglets to a certain extent.


Assuntos
Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Animais , Suínos , Camundongos , Anticorpos Antivirais , Vírus da Diarreia Epidêmica Suína/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Antibacterianos
6.
Inflammopharmacology ; 32(2): 1025-1038, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308795

RESUMO

BACKGROUND: This study aimed to evaluate the immunogenicity and safety of different types of poliovirus vaccines. METHODS: A randomized, blinded, single-center, parallel-controlled design was employed, and 360 infants aged ≥ 2 months were selected as study subjects. They were randomly assigned to bOPV group (oral Sabin vaccine) and sIPV group (Sabin strain inactivated polio vaccine), with 180 infants in each group. Adverse reaction events in the vaccinated subjects were recorded. The micro-neutralization test using cell culture was conducted to determine the geometric mean titer (GMT) of neutralizing antibodies against poliovirus types I, II, and III in different groups, and the seroconversion rates were calculated. RESULTS: Both groups exhibited a 100% seropositivity rate after booster immunization. The titers of neutralizing antibodies for the three types were predominantly distributed within the range of 1:128 to 1:512. The fold increase of type I antibodies differed markedly between the two groups (P < 0.05). Moreover, the fold increase of type II and type III antibodies for poliovirus differed slightly between the two groups (P > 0.05). The fourfold increase rate in sIPV group was drastically superior to that in bOPV group (P < 0.05). When comparing the post-immunization GMT levels of type I antibodies in individuals who completed the full course of spinal muscular atrophy vaccination, bOPV group showed greatly inferior levels to sIPV group (P < 0.05). For type II and type III antibodies, individuals in bOPV group demonstrated drastically superior post-immunization GMT levels to those in sIPV group (P < 0.05). The incidence of adverse reactions between the bOPV and sIPV groups differed slightly (P > 0.05). CONCLUSION: These findings indicated that both the oral vaccine and inactivated vaccine had good safety and immunogenicity in infants aged ≥ 2 months. The sIPV group generated higher levels of neutralizing antibodies in serum, particularly evident in the post-immunization GMT levels for types II and III.


Assuntos
Poliomielite , Poliovirus , Humanos , Lactente , Anticorpos Neutralizantes , Anticorpos Antivirais , Esquemas de Imunização , Poliomielite/prevenção & controle , Poliomielite/induzido quimicamente , Vacina Antipólio Oral/efeitos adversos , Observação
7.
J Infect Dis ; 228(7): 851-856, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014728

RESUMO

BACKGROUND: Rotavirus vaccines have reduced effectiveness in high-mortality settings. Interference between enteric viruses and live-attenuated oral vaccine strains may be a factor. METHODS: In a birth cohort of healthy Australian infants, parents collected weekly stool samples. Three hundred eighty-one paired swabs collected within 10-days of RotaTeq vaccination from 140 infants were tested for 10 enteric viruses and RotaTeq strains. RESULTS: Collectively, both ribonucleic acid and deoxyribonucleic acid viruses were negatively associated with RotaTeq shedding (adjusted odds ratio = 0.29, 95% confidence interval = 0.14-0.58 and adjusted odds ratio = 0.30, 95% confidence interval = 0.11-0.78, respectively). CONCLUSIONS: Enteric viruses may interfere with RotaTeq replication in the gut and thus RotaTeq stool shedding.


Assuntos
Infecções por Enterovirus , Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Lactente , Humanos , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Coorte de Nascimento , Austrália/epidemiologia , Vacinas Atenuadas , Antígenos Virais
8.
Infect Immun ; 91(5): e0004323, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37036335

RESUMO

Chlamydia muridarum has been used to study chlamydial pathogenesis because it induces mice to develop hydrosalpinx, a pathology observed in C. trachomatis-infected women. We identified a C. muridarum mutant that is no longer able to induce hydrosalpinx. In the current study, we evaluated the mutant as an attenuated vaccine. Following an intravaginal immunization with the mutant, mice were protected from hydrosalpinx induced by wild-type C. muridarum. However, the mutant itself productively colonized the mouse genital tract and produced infectious organisms in vaginal swabs. Nevertheless, the mutant failed to produce infectious shedding in the rectal swabs following an oral inoculation. Importantly, mice orally inoculated with the mutant mounted transmucosal immunity against challenge infection of wild-type C. muridarum in the genital tract. The protection was detected as early as day 3 following the genital challenge infection and the orally immunized mice were protected from any significant pathology in the upper genital tract. However, the same orally immunized mice failed to prevent the colonization of wild-type C. muridarum in the gastrointestinal tract. The transmucosal immunity induced by the oral mutant was further validated in the airway. The orally vaccinated mice were protected from both lung infection and systemic toxicity caused by intranasally inoculated wild-type C. muridarum although the same mice still permitted the gastrointestinal colonization by the wild-type C. muridarum. These observations suggest that the mutant C. muridarum may be developed into an intracellular oral vaccine vector (or IntrOv) for selectively inducing transmucosal immunity in extra-gut tissues.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Infecções do Sistema Genital , Feminino , Animais , Camundongos , Vacinação , Imunização , Chlamydia trachomatis , Infecções do Sistema Genital/patologia
9.
J Virol ; 96(2): e0159921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705557

RESUMO

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. IMPORTANCE SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Administração Oral , Animais , Feminino , Macaca mulatta , Masculino , Eficácia de Vacinas
10.
Microb Pathog ; 185: 106417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866552

RESUMO

The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.


Assuntos
Vacina contra Brucelose , Brucelose , Lactococcus lactis , Bovinos , Camundongos , Animais , Lactococcus lactis/genética , Camundongos Endogâmicos BALB C , Vacina contra Brucelose/genética , Brucelose/prevenção & controle , Vacinação/métodos , Imunização/métodos , Brucella abortus/genética , Proteínas Recombinantes/genética , Imunoglobulina G , Anticorpos Antibacterianos
11.
BMC Cancer ; 23(1): 167, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803483

RESUMO

BACKGROUND: A Wilms' tumor 1 (WT1) oral vaccine, Bifidobacterium longum (B. longum) 420, in which the bacterium is used as a vector for WT1 protein, triggers immune responses through cellular immunity consisting of cytotoxic T lymphocytes (CTLs) and other immunocompetent cells (e.g., helper T cells). We developed a novel, oral, helper epitope-containing WT1 protein vaccine (B. longum 2656) to examine whether or not B. longum 420/2656 combination further accelerates the CD4+ T cell help-enhanced antitumor activity in a model of murine leukemia. METHODS: C1498-murine WT1-a genetically-engineered, murine leukemia cell line to express murine WT1-was used as tumor cell. Female C57BL/6 J mice were allocated to the B. longum 420, 2656, and 420/2656 combination groups. The day of subcutaneous inoculation of tumor cells was considered as day 0, and successful engraftment was verified on day 7. The oral administration of the vaccine by gavage was initiated on day 8. Tumor volume, the frequency and phenotypes of WT1-specific CTLs in CD8+ T cells in peripheral blood (PB) and tumor-infiltrating lymphocytes (TILs), as well as the proportion of interferon-gamma (INF-γ)-producing CD3+CD4+ T cells pulsed with WT135-52 peptide in splenocytes and TILs were determined. RESULTS: Tumor volume was significantly smaller (p < 0.01) in the B. longum 420/2656 combination group than in the B. longum 420 group on day 24. WT1-specific CTL frequency in CD8+ T cells in PB was significantly greater in the B. longum 420/2656 combination group than in the B. longum 420 group at weeks 4 (p < 0.05) and 6 (p < 0.01). The proportion of WT1-specific, effector memory CTLs in PB increased significantly in the B. longum 420/2656 combination group than in the B. longum 420 group at weeks 4 and 6 (p < 0.05 each). WT1-specific CTL frequency in intratumoral CD8+ T cells and the proportion of IFN-γ-producing CD3+CD4+ T cells in intratumoral CD4+ T cells increased significantly (p < 0.05 each) in the B. longum 420/2656 combination group than in the 420 group. CONCLUSIONS: B. longum 420/2656 combination further accelerated antitumor activity that relies on WT1-specific CTLs in the tumor compared with B. longum 420.


Assuntos
Vacinas Anticâncer , Neoplasias Renais , Leucemia , Tumor de Wilms , Feminino , Animais , Camundongos , Proteínas WT1 , Linfócitos T CD8-Positivos , Epitopos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos , Interferon gama
12.
Virol J ; 20(1): 76, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085816

RESUMO

BACKGROUND: H9N2 virus is mainly transmitted through the respiratory mucosal pathway, so mucosal immunity is considered to play a good role in controlling avian influenza infection. It is commonly accepted that no adequate mucosal immunity is achieved by inactivated vaccines, which was widely used to prevent and control avian influenza virus infection. Thus, an improved vaccine to induce both mucosal immunity and systemic immunity is urgently required to control H9N2 avian influenza outbreaks in poultry farms. METHODS: In this study, we constructed a novel Lactococcus lactis (L. lactis) strain expressing a recombinant fusion protein consisting of the HA1 proteins derived from an endemic H9N2 virus strain and chicken IgY Fc fragment. We evaluated the immunogenicity and protective efficacy of this recombinant L. lactis HA1-Fc strain. RESULTS: Our data demonstrated that chickens immunized with L. lactis HA1-Fc strain showed significantly increased levels of serum antibodies, mucosal secretory IgA, T cell-mediated immune responses, and lymphocyte proliferation. Furthermore, following challenge with H9N2 avian influenza virus, chickens immunized with L. lactis HA1-Fc strain showed reduced the weight loss, relieved clinical symptoms, and decreased the viral titers and the pathological damage in the lung. Moreover, oropharyngeal and cloacal shedding of the H9N2 influenza virus was detected in chicken immunized with L. lactis HA1-Fc after infection, the results showed the titer was low and reduced quickly to reach undetectable levels at 7 days after infection. CONCLUSION: Our data showed that the recombinant L. lactis HA1-Fc strain could induce protective mucosal and systemic immunity, and this study provides a theoretical basis for improving immune responses to prevent and control H9N2 virus infection.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Lactococcus lactis , Animais , Galinhas , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/prevenção & controle , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Imunidade nas Mucosas , Vacinas contra Influenza/genética , Vacinação , Anticorpos Antivirais
13.
Microb Cell Fact ; 22(1): 96, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161468

RESUMO

BACKGROUND: The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS: In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION: This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Interleucina-10 , Imunidade nas Mucosas , Epitopos , Fator de Necrose Tumoral alfa , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Imunização , Citocinas
14.
Fish Shellfish Immunol ; 142: 109159, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832746

RESUMO

Miamiensis avidus is a parasitic pathogen that causes scuticociliatosis, a severe and often lethal marine infection that affects marine fishes worldwide, including olive flounder (Paralichthys olivaceus) in Korea. This parasite infects all size groups of flounder year-round, causing recurring mortalities and huge economic losses to the Korean flounder industry each year. However, few efforts have been made to implement effective remedial measures to control this parasite. Therefore, our study sought to develop a chitosan microsphere (MS)-encapsulated inactivated vaccine (IMa + chitosan) for oral delivery (adsorbed in feed) to flounder fingerlings and assess its protective efficacy at different modalities via three in vivo experimental trials. Immunisation trial-1 was conducted to determine the effective concentration of chitosan. Our findings indicated that an IMa + chitosan 0.05 % vaccine formulation was safe and effective in providing moderate protection [46.67%-53.3 % relative percent survival (RPS)] against M. avidus intraperitoneal (IP) injection challenge at two weeks post-vaccination (wpv) compared to the IMa + chitosan 0.01 % and IMa + chitosan 0.005 % vaccines (0%-13.3 % RPS) irrespective of the antigen doses. In trial-2, the IMa + chitosan 0.05 % vaccine elicited similar protective immunity (30.8%-57.1 % RPS) in olive flounder against M. avidus at varying antigen doses (high: 2.38 × 106 cells/fish; low: 1.5 × 105 cells/fish), immunisation periods (2 and 5 wpv), and challenge modes (IP injection and immersion). Furthermore, experimental trial-3 validated the use of chitosan MS as an IMa antigen carrier to improve survivability (41.7 % RPS) in the host by significantly (p < 0.05) upregulating specific anti-M. avidus antibody titres in the fish sera and mucus of the group immunised with IMa-containing chitosan MS. In contrast, non-specific immunomodulatory effects (16.7 % RPS and enhanced mucosal antibody titres) were observed in the group treated with chitosan MS without IMa. Therefore, our findings suggested that oral administration of chitosan MS (0.05 %)-encapsulated IMa vaccine is a promising immunisation strategy against M. avidus that can protect the IMa antigen from digestive degradation, facilitates its targeted delivery to the host immune organs, and helps in orchestrating protective immune induction in olive flounder, thus controlling parasite infection.


Assuntos
Quitosana , Doenças dos Peixes , Linguado , Oligoimenóforos , Parasitos , Animais , Doenças dos Peixes/parasitologia , Microesferas , Vacinas de Produtos Inativados
15.
Fish Shellfish Immunol ; 139: 108865, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277048

RESUMO

Shrimp are especially susceptible to the White Spot Syndrome Virus (WSSV). Oral administration of the WSSV envelop protein VP28 is a promising approach to protect shrimp against WSSV. In this study, Macrobrachium nipponense (M. nipponense) were fed for 7 days with food supplemented with Anabaena sp. PCC 7120 (Ana7120) expressing VP28 and then challenged with WSSV. The survival rates of M. nipponense in three groups, including control, WSSV-challenged, and VP28-vaccinated, were subsequently determined. We also determined the WSSV content of different tissues and the tissue morphology in the absence of and after viral challenge. The survival rate of the positive control group (no vaccination and challenge, 10%) and empty vector group (fed with Ana7120 pRL-489 algae and challenged, 13.3%) was much lower than the survival rate of M. nipponense in wild type group (fed with Ana7120 and challenged, 18.9%), immunity group 1 (fed with 3.33% Ana7120 pRL-489-vp28 and challenged, 45.6%) or immunity group 2 (fed with 6.66% Ana7120 pRL-489-vp28 and challenged, 62.2%). RT-qPCR showed that WSSV content of the gill, hepatopancreas and muscle of immunity groups 1 and 2 were substantially lower than the positive control. Microscopic examination revealed that WSSV-challenged positive control exhibited large number of cell rupture, necrosis, nuclear exfoliation in gills and hepatopancreatic tissues. The gill and hepatopancreas of immunity group 1 showed partial symptoms of infection, yet the tissue was visibly healthier than that of the positive control group. No symptoms were visible in the gills and hepatopancreatic tissue of immunity group 2. The results demonstrate that the probability of M. nipponense infected by WSSV can be diminished by oral administration of cyanobacteria-expressed VP28. Such an approach could improve the disease resistance and delay the death of M. nipponense in the commercial production of this shrimp.


Assuntos
Anabaena , Palaemonidae , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Microscopia , Proteínas do Envelope Viral
16.
Fish Shellfish Immunol ; 142: 109179, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863125

RESUMO

Largemouth bass ranavirus (LMBV) is highly contagious and lethal to largemouth bass, causing significant economic losses to the aquaculture industry. Oral vaccination is generally considered the most ideal strategy for protecting fish from viral infection. In this study, the fusion protein MCP-FlaC, consisting of the main capsid protein (MCP) as the antigen and flagellin C (FlaC) as the adjuvant, was intracellularly expressed in Pichia pastoris. Subsequently, the recombinant P. pastoris was freeze-dried to prepare the oral vaccine P-MCP-FlaC. Transmission electron microscopy and scanning electron microscopy analysis showed that the morphology and structure of the freeze-dried recombinant P. pastoris vaccine remained intact. The experiment fish (n = 100) was divided into five groups (P-MCP-FlaC, P-MCP, P-FlaC, P-pPIC3.5K, control) to evaluate the protective efficacy of the recombinant vaccine. Oral P-MCP-FlaC vaccine effectively up-regulated the serum enzymes activity (total superoxide dismutase, lysozyme, total antioxidant capacity, and complement component 3). The survival rate of P-MCP-FlaC group was significantly higher than that of the other groups. The mRNA expression of crucial immune genes (IL-1ß, TNF-α, MHC-II, IFN-γ, Mx, IgM, IgT) was also signally elevated in P-MCP-FlaC group. Vaccine P-MCP-FlaC markedly inhibited the replication of LMBV in the spleen, head kidney, and intestine, while reducing the degree of lesion in the spleen. These results suggest that the oral P-MCP-FlaC vaccine could effectively control LMBV infection, proving an effective strategy for viral diseases prevention in aquaculture.


Assuntos
Bass , Doenças dos Peixes , Ranavirus , Animais , Proteínas do Capsídeo/genética , Flagelina , Adjuvantes Imunológicos , Vacinas Sintéticas
17.
BMC Pulm Med ; 23(1): 378, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805515

RESUMO

BACKGROUND: Efforts have been made to reduce the risk of chronic obstructive pulmonary disease (COPD) exacerbations using a variety of measures. Broncho-Vaxom (BV) is an immunomodulating agent that has shown potential benefit by balancing between immune stimulation and regulation in patients with COPD. In this study, we evaluated the clinical efficacy of BV for reducing the risk of COPD exacerbations. METHODS: This study was based on the Korean National Health Insurance database, which contains reimbursement information for almost the entire population of South Korea. We extracted data from 2016 to 2019 for patients started on BV during 2017-2018. We collected baseline data on demographics, comorbidities, inhaler use, hospital type, and insurance type 1 year before starting BV. We also analyzed exacerbation history, starting from the year before BV initiation. RESULTS: In total, 238 patients were enrolled in this study. Their mean age was 69.2 ± 9.14 years, 79.8% were male, and 45% experienced at least one exacerbation. BV reduced the risk of moderate (odds ratio [OR] = 0.59, 95% confidence interval [CI]: 0.38-0.91) and moderate-to-severe exacerbations compared to pre- and post-BV (OR = 0.571, 95% CI: 0.37-0.89). BV use also reduced the incidence of moderate and moderate-to-severe exacerbations (incidence rate ratio [IRR] = 0.75, p = 0.03; and IRR = 0.77, p = 0.03, respectively). The use of BV was significantly delayed moderate exacerbations (hazard ratio = 0.68, p = 0.02), but not with moderate-to-severe or severe exacerbations. CONCLUSION: The use of BV was associated with fewer moderate and moderate-to-severe exacerbations. Additionally, BV was associated with a delay in moderate COPD exacerbations.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Extratos Celulares , Nebulizadores e Vaporizadores , República da Coreia/epidemiologia , Progressão da Doença
18.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762235

RESUMO

COVID-19 pandemic, caused by the SARS-CoV-2 virus, is still affecting the entire world via the rapid emergence of new contagious variants. Vaccination remains the most effective prevention strategy for viral infection, yet not all countries have sufficient access to vaccines due to limitations in manufacturing and transportation. Thus, there is an urgent need to develop an easy-to-use, safe, and low-cost vaccination approach. Genetically modified microorganisms, especially probiotics, are now commonly recognized as attractive vehicles for delivering bioactive molecules via oral and mucosal routes. In this study, Lactobacillus casei has been selected as the oral vaccine candidate based on its' natural immunoadjuvant properties and the ability to resist acidic gastric environment, to express antigens of SARS-CoV-2 Omicron variant B.1.1.529 with B-cell and T-cell epitopes. This newly developed vaccine, OMGVac, was shown to elicit a robust IgG systemic immune response against the spike protein of Omicron variant B.1.1.529 in Golden Syrian hamsters. No adverse effects were found throughout this study, and the overall safety was evaluated in terms of physiological and histopathological examinations of different organs harvested. In addition, this study illustrated the use of the recombinant probiotic as a live delivery vector in the initiation of systemic immunity, which shed light on the future development of next-generation vaccines to combat emerging infectious diseases.


Assuntos
COVID-19 , Vacinas , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , Pandemias , COVID-19/prevenção & controle , Mesocricetus
19.
J Infect Dis ; 225(1): 34-41, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34758086

RESUMO

BACKGROUND: Vaccines that are shelf stable and easy to administer are crucial to improve vaccine access and reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission around the world. METHODS: In this study, we demonstrate that an oral, adenovirus-based vaccine candidate protects against SARS-CoV-2 in a Syrian hamster challenge model. RESULTS: Hamsters administered 2 doses of VXA-CoV2-1 showed a reduction in weight loss and lung pathology and had completely eliminated infectious virus 5 days postchallenge. Oral immunization induced antispike immunoglobulin G, and neutralizing antibodies were induced upon oral immunization with the sera, demonstrating neutralizing activity. CONCLUSIONS: Overall, these data demonstrate the ability of oral vaccine candidate VXA-CoV2-1 to provide protection against SARS-CoV-2 disease.


Assuntos
Vacinas contra Adenovirus/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Mesocricetus , Vacinas contra Adenovirus/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Cricetinae , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
20.
J Infect Dis ; 226(5): 852-861, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34610135

RESUMO

BACKGROUND: Primary intestinal immunity through viral replication of live oral vaccine is key to interrupt poliovirus transmission. We assessed viral fecal shedding from infants administered Sabin monovalent poliovirus type 2 vaccine (mOPV2) or low and high doses of 2 novel OPV2 (nOPV2) vaccine candidates. METHODS: In 2 randomized clinical trials in Panama, a control mOPV2 study (October 2015 to April 2016) and nOPV2 study (September 2018 to October 2019), 18-week-old infants vaccinated with bivalent oral poliovirus vaccine/inactivated poliovirus vaccine received 1 or 2 study vaccinations 28 days apart. Stools were assessed for poliovirus RNA by polymerase chain reaction (PCR) and live virus by culture for 28 days postvaccination. RESULTS: Shedding data were available from 621 initially reverse-transcription PCR-negative infants (91 mOPV2, 265 nOPV2-c1, 265 nOPV2-c2 recipients). Seven days after dose 1, 64.3% of mOPV2 recipients and 31.3%-48.5% of nOPV2 recipients across groups shed infectious type 2 virus. Respective rates 7 days after dose 2 decreased to 33.3% and 12.9%-22.7%, showing induction of intestinal immunity. Shedding of both nOPV2 candidates ceased at similar or faster rates than mOPV2. CONCLUSIONS: Viral shedding of either nOPV candidate was similar or decreased relative to mOPV2, and all vaccines showed indications that the vaccine virus was replicating sufficiently to induce primary intestinal mucosal immunity.


Assuntos
Poliomielite , Poliovirus , Anticorpos Antivirais , Humanos , Lactente , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinas Atenuadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA