Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.184
Filtrar
1.
Annu Rev Phys Chem ; 75(1): 421-435, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424492

RESUMO

Large strides have been made in designing an ever-increasing set of modern organic materials of high functionality and thus, often, of high complexity, including semiconducting polymers, organic ferroelectrics, light-emitting small molecules, and beyond. Here, we review how broadly applied thermal analysis methodologies, especially differential scanning calorimetry, can be utilized to provide unique information on the assembly and solid-state structure of this extensive class of materials, as well as the phase behavior of intrinsically intricate multicomponent systems. Indeed, highly relevant insights can be gained that are useful, e.g., for further materials-discovery activities and the establishment of reliable processing protocols, in particular if combined with X-ray diffraction techniques, spectroscopic tools, and scanning electron microscopy enabled by vapor-phase infiltration staining. We, hence, illustrate that insights far richer than simple melting point- and glass-transition identification can be obtained with differential scanning calorimetry, rendering it a critical methodology to understand complex matter, including functional macromolecules and blends.

2.
Nano Lett ; 24(10): 3051-3058, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427970

RESUMO

Construction of a high-quality charge transport layer (CTL) with intimate contact with the substrate via tailored interface engineering is crucial to increase the overall charge transfer kinetics and stability for a bulk-heterojunction (BHJ) organic solar cell (OSC). Here, we demonstrate a surface chemistry strategy to achieve a homogeneous composite hole transport layer (C-HTL) with robust substrate contact by self-assembling two-dimensional tungsten disulfide (WS2) nanosheets on a thin molybdenum oxide (MoO3) film-evaporated indium tin oxide (ITO) substrate. It is found that over such a well-defined C-HTL, WS2 is homogeneously tethered on the ITO/MoO3 substrate stemming from the strong electronic coupling interaction between the building blocks, which enables a favorable interfacial configuration in terms of uniformity. As a result, the D18:L8-BO-based OSC with C-HTL exhibits a power conversion efficiency (PCE) of 19.23%, an 11% improvement over the WS2-based control device, and the highest efficiency among single-junction PEDOT-free binary BHJ OSCs.

3.
J Comput Chem ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212065

RESUMO

Fourteen substituted diketopyrrolopyrrole (DPP) molecules in a donor (D)-acceptor (DPP)-donor (D) arrangement were designed. We employed density functional theory, time-dependent DFT, DFT-MRCI and the ab initio wave function second-order algebraic diagrammatic construction (ADC(2)) methods to investigate theoretically these systems. The examined aromatic substituents have one, two, or three hetero- and non-hetero rings. We comprehensively investigated their optical, electronic, and charge transport properties to evaluate potential applications in organic electronic devices. We found that the donor substituents based on one, two, or three aromatic rings bonded to the DPP core can improve the efficiency of an organic solar cell by fine-tuning the highest occupied molecular orbital/lowest unoccupied molecular orbital levels to match acceptors in typical bulk heterojunctions acceptors. Several properties of interest for organic photovoltaic devices were computed. We show that the investigated molecules are promising for applications as donor materials when combined with typical acceptors in bulk heterojunctions because they have appreciable energy conversion efficiencies resulting from their low ionization potentials and high electron affinities. This scenario allows a more effective charge separation and reduces the recombination rates. A comprehensive charge transfer analysis shows that D-A (DDP)-D systems have significant intramolecular charge transfer, further confirming their promise as candidates for donor materials in solar cells. The significant photophysical properties of DPP derivatives, including the high fluorescence emission, also allow these materials to be used in organic light-emitting diodes.

4.
Small ; 20(9): e2305437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863807

RESUMO

Organic Photovoltaics (OPV) is a very promising technology to harvest artificial illumination and power smart devices of the Internet of Things (IoT). Efficiencies as high as 30.2% have been reported for OPVs under warm white light-emitting diode (LED) light. This is due to the narrow spectrum of indoor light, which leads to an optimal bandgap of ≈1.9 eV. Under full sunlight, OPV devices often suffer from poor stability compared to the established inorganic PV technologies such as crystalline silicon. This study focuses on a potentially very cost-effective Indium Tin Oxide (ITO) free cell stack with absorber materials processed from non-halogenated solvents. These organic solar cells and modules with efficiencies up to 21% can already achieve remarkable stabilities under typical indoor illumination. Aging under 50,000 lux LED lighting leads to very little degradation after more than 11 000 h. This light dose corresponds to more than 110 years under 500 lux. For modules encapsulated with a flexible barrier, extrapolated lifetimes of more than 41 years are achieved. This shows that OPV is mature for the specific application under indoor illumination. Due to the large number of potential organic semiconducting materials, further efficiency increase can be expected.

5.
Small ; : e2405925, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225373

RESUMO

Dimeric acceptors are expected to satisfy both excellent power conversion efficiency (PCE) and operational stability of organic solar cells (OSCs). However, comparing to highly planar and symmetrical monomer-like acceptors, the quite different steric/spatial configurations of dimeric acceptors affect device outcomes greatly. Herein, on basis of the same dimeric molecular platform that constructed by bridging central units of two monomer-like acceptor, diverse substituents (─OCH3 for D1, ─CH3 for D2, and ─CF3 for D3) are grafted on central units to regulate the three dimensions (3D) geometries of dimeric acceptors delicately. A systematic investigation reveals the substituent-dependent variation of energy level, absorption, and molecular packing behavior. Consequently, D2 acceptor, characteristic of more favorable configuration, affords a superior film morphology and charge transfer/transport dynamics in resulting OSCs, thus yielding an excellent PCE of 17.50% along with a good long-term stability. This work manifests the crucially important role of central substituents in constructing high-performance dimeric acceptors.

6.
Small ; 20(33): e2401050, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511580

RESUMO

Polymeric semiconducting materials struggle to achieve fast charge mobility due to low structural order. In this work, five 1H-indene-1,3(2H)dione-benzene structured halogenated solid additives namely INB-5F, INB-3F, INB-1F, INB-1Cl, and INB-1Br with gradually varied electrostatic potential are designed and utilized to regulate the structural order of polymer donor PM6. Molecular dynamics simulations demonstrate that although the dione unit of these additives tends to adsorb on the backbone of PM6, the reduced electrostatic potential of the halogen-substituted benzene can shift the benzene interacting site from alkyl side chains to the conjugated backbone of PM6, not only leading to enhanced π-π stacking in out-of-plane but also arising new π-π stacking in in-plane together with the appearance of multiple backbone stacking in out-of-plane, consequent to the co-existence of face-on and edge-on molecular orientations. This molecular packing transformation further translates to enhanced charge transport and suppressed carrier recombination in their photovoltaics, with a maximum power conversion efficiency of 19.4% received in PM6/L8-BO layer-by-layer deposited organic solar cells.

7.
Small ; : e2404734, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966904

RESUMO

The morphology of the active layer is crucial for highly efficient organic solar cells (OSCs), which can be regulated by selecting a rational third component. In this work, the highly crystalline nonfullerene acceptor BTP-eC9 is selected as the morphology regulator in OSCs with PM6:BTP-BO-4Cl as the main system. The addition of BTP-eC9 can prolong the nucleation and crystallization progress of acceptor and donor molecules, thereby enhancing the order of molecular arrangement. Meanwhile, the nucleation and crystallization time of the donor is earlier than that of the acceptors after introducing BTP-eC9, which is beneficial for obtaining a better vertical structural phase separation. The exciton dissociation, charge transport, and charge collection are promoted effectively by the optimized morphology of the active layer, which improves the short-circuit current density and filling factor. After introducing BTP-eC9, the power conversion efficiencies (PCEs) of the ternary OSCs are improved from 17.31% to 18.15%. The PCE is further improved to 18.39% by introducing gold nanopyramid (Au NBPs) into the hole transport layer to improve photon utilization efficiency. This work indicates that the morphology can be optimized by selecting a highly crystalline third component to regulate the nucleation and crystallization progress of the acceptor and donor molecules.

8.
Small ; 20(12): e2308216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946696

RESUMO

The ternary strategy is one of the effective methods to regulate the morphology of the active layer in organic solar cells (OSCs). In this work, the ternary OSCs with bulk heterojunction (BHJ) or layer-by-layer (LbL) active layers are prepared by using the polymer donor PM6 and the non-fullerene acceptor L8-BO as the main system and the fullerene acceptor PC71BM as the third component. The power conversion efficiencies (PCEs) of BHJ OSCs and LbL OSCs are increased from 17.10% to 18.02% and from 17.20% to 18.20% by introducing PC71BM into the binary active layer, respectively. The in situ UV-vis absorption spectra indicate that the molecular aggregation and crystallization process can be prolonged by introducing PC71BM into the PM6:L8-BO or PM6/L8-BO active layer. The molecular orientation and molecular crystallinity in the active layer are optimized by introducing the PC71BM into the binary BHJ or LbL active layers, which can be confirmed by the experimental results of grazing incidence wide-angle X-ray scattering. This study demonstrates that the third component PC71BM can be used as a morphology regulator to regulate the morphology of BHJ or LbL active layers, thus effectively improving the performance of BHJ and LbL OSCs.

9.
Small ; 20(10): e2306471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919853

RESUMO

Zinc oxide (ZnO) is widely used as an electron transporting layer (ETL) for organic solar cells (OSCs). Here, a low-cost commercial water/alcohol-soluble fluorescent conversion agent, sodium 2,2'-([1,1'-biphenyl]-4,4'-diyldivinylene)-bis(benzenesulfonate) (CBS), is incorporated into ZnO to develop a novel organic-inorganic hybrid ETL for high-performance OSCs. The photoinduced charge transfer from CBS to ZnO significantly improves the charge transport properties of ZnO, resulting in faster electron extraction and reduced charge recombination in OSC devices with ZnO:CBS ETLs. ZnO:CBS-based devices exhibit higher power conversion efficiencies (PCEs) than their pure ZnO-based counterparts, especially in devices with a thicker ETL, which is more suitable for roll-to-roll and large-area module processing. Furthermore, the strong ultraviolet-light absorption capability of CBS inhibits the photodegradation of the active layer, improving the photostability of ZnO:CBS based OSC devices. Therefore, this work provides a simple and effective strategy for realizing high-performance OSCs with high PCE and good photostability, which can further facilitate the commercialization of OSCs.

10.
Small ; 20(3): e2305529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688316

RESUMO

Reducing non-radiative recombination energy loss (ΔEnonrad ) in organic solar cells (OSCs) has been considered an effective method to improve device efficiency. In this study, the backbone of PTBTT-4F/4Cl is divided into D1-D2-D3 segments and reconstructed. The isomerized TPBTT-4F/4Cl obtains stronger intramolecular charge transfer (ICT), thus leading to elevated highest occupied molecular orbital (HOMO) energy level and reduced bandgap (Eg ). According to ELoss  = Eg- qVOC , the reduced Eg and enhanced open circuit voltage (VOC ) result in lower ELoss , indicating that ELoss has been effectively suppressed in the TPBTT-4F/4Cl based devices. Furthermore, compared to PTBTT derivatives, the isomeric TPBTT derivatives exhibit more planar molecular structure and closer intermolecular stacking, thus affording higher crystallinity of the neat films. Therefore, the reduced energy disorder and corresponding lower Urbach energy (Eu ) of the TPBTT-4F/4Cl blend films lead to low ELoss and high charge-carrier mobility of the devices. As a result, benefitting from synergetic control of molecular stacking and energetic offsets, a maximum power conversion efficiency (PCE) of 15.72% is realized from TPBTT-4F based devices, along with a reduced ΔEnonrad of 0.276 eV. This work demonstrates a rational method of suppressing VOC loss and improving the device performance through molecular design engineering by core segmentation and isomerization.

11.
Small ; 20(10): e2305977, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919095

RESUMO

Additive engineering is widely utilized to optimize film morphology in active layers of organic solar cells (OSCs). However, the role of additive in film formation and adjustment of film morphology remains unclear at the molecular level. Here, taking high-efficiency Y6-based OSC films as an example, this work thus employs all-atom molecular-dynamics simulations to investigate how introduction of additives with different π-conjugation degree thermodynamically and dynamically impacts nanoscale molecular packings. These results demonstrate that the van der Waals (vdW) interactions of the Y6 end groups with the studied additives are strongest. The larger the π-conjugation degree of the additive molecules, the stronger the vdW interactions between additive and Y6 molecules. Due to such vdW interactions, the π-conjugated additive molecules insert into the neighboring Y6 molecules, thus opening more space for relaxation of Y6 molecules to trigger more ordered packing. Increasing the interactions between the Y6 end groups and the additive molecules not only accelerates formation of the Y6 ordered packing, but also induces shorter Y6-intermolecular distances. This work reveals the fundamental molecular-level mechanism behind film formation and adjustment of film morphology via additive engineering, providing an insight into molecular design of additives toward optimizing morphologies of organic semiconductor films.

12.
Small ; 20(8): e2306854, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828639

RESUMO

Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has increased dramatically, making a big step toward the industrial application of OSCs. Among numerous OSCs, benzodithiophene (BDT)-based OSCs stand out in achieving efficient PCE. Notably, single-junction OSCs using BDT-based polymers as donor materials have completed a PCE of over 19%, indicating a dramatic potential for preparing high-performance large-scale OSCs. This paper reviews the recent progress of OSCs based on BDT polymer donor materials (PDMs). The development of BDT-based OSCs is concisely summarized. Meanwhile, the relationship between the structure of PDMs and the performance of OSCs is further described in this review. Besides, the development and prospect of single junction OSCs are also discussed.

13.
Small ; 20(3): e2305638, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699757

RESUMO

Chiral alkyl chains are ubiquitously observed in organic semiconductor materials and can regulate solution processability and active layer morphology, but the effect of stereoisomers on photovoltaic performance has rarely been investigated. For the racemic Y-type acceptors widely used in organic solar cells, it remains unknown if the individual chiral molecules separate into the conglomerate phase or if racemic phase prevails. Here, the photovoltaic performance of enantiomerically pure Y6 derivatives, (S,S)/(R,R)-BTP-4F, and their chiral mixtures are compared. It is found that (S,S) and (R,R)-BTP-4F molecule in the racemic mixtures tends to interact with its enantiomer. The racemic mixtures enable efficient light harvesting, fast hole transfer, and long polaron lifetime, which is conducive to charge generation and suppresses the recombination losses. Moreover, abundant charge diffusion pathways provided by the racemate contribute to efficient charge transport. As a result, the racemate system maximizes the power output and minimizes losses, leading to a higher efficiency of 18.16% and a reduced energy loss of 0.549 eV, as compared to the enantiomerically pure molecules. This study demonstrates that the chirality of non-fullerene acceptors should receive more attention and be designed rationally to enhance the efficiency of organic solar cells.

14.
Small ; : e2403821, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949043

RESUMO

Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF3 and QxIC-CH3 are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH3, the single crystal structure reveals that QxIC-CF3 exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF3 exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T80 is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T80 = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.

15.
Small ; 20(24): e2308863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38287727

RESUMO

Ternary organic solar cells (T-OSCs) have attracted significant attention as high-performance devices. In recent years, T-OSCs have achieved remarkable progress with power conversion efficiency (PCE) exceeding 19%. However, the introduction of the third component complicates the intermolecular interaction compared to the binary blend, resulting in poor controllability of active layer and limiting performance improvement. To address these issues, dual-functional third components have been developed that not only broaden the spectral range but also optimize morphology. In this review, the effect of the third component on expanding the absorption range of T-OSCs is first discussed. Second, the extra functions of the third component are introduced, including adjusting the crystallinity and molecular stack in active layer, regulating phase separation and purity, altering molecular orientation of the donor or acceptor. Finally, a summary of the current research progress is provided, followed by a discussion of future research directions.

16.
Small ; 20(40): e2404066, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38837665

RESUMO

Inverted organic solar cells (OSCs) have garnered significant interest due to their remarkable stability. In this study, the efficiency and stability of inverted OSCs are enhanced via the in situ self-organization (SO) of an interfacial modification material Phen-NaDPO onto tin oxide (SnO2). During the device fabrication, Phen-NaDPO is spin-coated with the active materials all together on SnO2. Driven by the interactions with SnO2 and the thermodynamic forces due to its high surface energy and the convection flow, Phen-NaDPO spontaneously migrates to the SnO2 interface, resulting in the formation of an in situ modification layer on SnO2. This self-organization of Phen-NaDPO not only effectively reduces the work function of SnO2, but also enhances the ordered molecular stacking and manipulates the vertical morphology of the active layer, which suppress the surface trap-assisted recombination and minimize the charge extraction. As a result, the SO devices based on PM6:Y6 exhibit significantly improved photovoltaic performance with an enhanced power conversion efficiency of 17.62%. Moreover, the stability of the SO device is also improved. Furthermore, the SO ternary devices based on PM6:D18:L8-BO achieved an impressive PCE of 18.87%, standing as one of the highest values for single-junction inverted organic solar cells to date.

17.
Small ; : e2406691, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394991

RESUMO

Functional third components targeted to improve a specific property of organic solar cells is an effective strategy. However, introducing a third component to simultaneously improve efficiency and stability and achieve good performance in thick-film devices has rarely been reported. Herein, low diffusion third components IDCN and ID2CN are reported to achieve a power conversion efficiency (PCE) of 18.08% and a high short-circuit current (J SC) of 27.82 mA cm-2, one of the highest values based on PM6:Y6. They increase light harvesting in the range of 400-500 nm while enhancing energy transfer via Förster resonance energy transfer (FRET). A tightly ordered molecular arrangement is achieved by modulating the preaggregation and film formation kinetics of Y6, which enhance exciton dissociation and charge transport. Moreover, the low-diffusion third component can effectively restrict the diffusion of Y6 to improve the morphology stability, and the T90 lifetime is increased from 689 to 1545 h. In 300 nm thick-film devices, PM6:ID2CN:Y6 achieves a PCE of 15.01%, much higher than PM6:Y6's 12.83%, demonstrating the great potential of ID2CN in thick-film devices.

18.
Small ; : e2405573, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39104295

RESUMO

Volatile solid additives have emerged as a promising strategy for enhancing film morphology and promoting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, a series of novel polycyclic aromatic additives with analogous chemical structures, including fluorene (FL), dibenzothiophene (DBT), and dibenzofuran (DBF) derived from crude oils, are presented and incorporated into OSCs. All these additives exhibit strong interactions with the electron-deficient terminal groups of L8-BO within the bulk-heterojunction OSCs. Moreover, they demonstrate significant sublimation during thermal annealing, leading to increase free volumes for the rearrangement and recrystallization of L8-BO. This phenomenon leads to an improved film morphology and an elevated glass-transition temperature of the photoactive layers. Consequently, the PCE of the PM6:L8-BO blend has been boosted from 16.60% to 18.60% with 40 wt% DBF additives, with a champion PCE of 19.11% achieved for ternary PM6:L8-BO:BTP-eC9 OSCs. Furthermore, the prolonged shelf and thermal stability have been observed in OSCs with these additives. This study emphasizes the synergic effect of volatile solid additives on the performance and thermal stability of OSCs, highlighting their potential for advancing the field of photovoltaics.

19.
Small ; 20(33): e2401176, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38529741

RESUMO

Incorporating a third component into binary organic solar cells (b-OSCs) has provided a potential platform to boost power conversion efficiency (PCEs). However, gaining control over the non-equilibrium blend morphology via the molecular design of the perylene diimide (PDI)-based third component toward efficient ternary organic solar cells (t-OSCs) still remains challenging. Herein, two novel PDI derivatives are developed with tailored molecular planarity, namely ufBTz-2PDI and fBTz-2PDI, as the third component for t-OSCs. Notably, after performing a cyclization reaction, the twisted ufBTz-2PDI with an amorphous character transferred to the highly planar fBTz-2PDI followed by a semi-crystalline character. When incorporating the semi-crystalline fBTz-2PDI into the D18:L8-BO system, the resultant t-OSC achieved an impressive PCE of 18.56%, surpassing the 17.88% attained in b-OSCs. In comparison, the addition of amorphous ufBTz-2PDI into the binary system facilitates additional charge trap sites and results in a deteriorative PCE of 14.37%. Additionally, The third component fBTz-2PDI possesses a good generality in optimizing the PCEs of several b-OSCs systems are demonstrated. The results not only provided a novel A-DA'D-A motif for further designing efficient third component but also demonstrated the crucial role of modulated crystallinity of the PDI-based third component in optimizing PCEs of t-OSCs.

20.
Small ; 20(30): e2311715, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396319

RESUMO

Interface modification plays an important role in improving the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the low non-covalent interaction between the cathode interface layer (CIL) and nonfullerene acceptor (NFA) directly affects the charge collection of OSCs. Here, the non-covalent interaction between the CIL and NFA is enhanced by introducing the 2D vermiculite (VML) in the poly(9,9-bis(3'-(N,N-dimethyl)-Nethylammonium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)) dibromide (PFN-Br) interface layer to form an efficient electron transport channel. As a result, the electron extraction efficiency from the active layer to the CIL is increased, and the PCE of OSCs based on PBDB-T:ITIC is boosted from 10.87% to 12.89%. In addition, the strategy of CIL doping VML is proven to be universal in different CIL materials, for which the PCE is boosted from 10.21% to 11.57% for OSCs based on PDINN and from 9.82% to 11.27% for OSCs based on PNDIT-F3N. The results provide a viable option for designing efficient CIL for high-performance non-fullerene OSCs, which may promote the commercialization of OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA