Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.104
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 118(2): 358-372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194491

RESUMO

The natural variation of plant-specialized metabolites represents the evolutionary adaptation of plants to their environments. However, the molecular mechanisms that account for the diversification of the metabolic pathways have not been fully clarified. Rice plants resist attacks from pathogens by accumulating diterpenoid phytoalexins. It has been confirmed that the composition of rice phytoalexins exhibits numerous natural variations. Major rice phytoalexins (momilactones and phytocassanes) are accumulated in most cultivars, although oryzalactone is a cultivar-specific compound. Here, we attempted to reveal the evolutionary trajectory of the diversification of phytoalexins by analyzing the oryzalactone biosynthetic gene in Oryza species. The candidate gene, KSLX-OL, which accounts for oryzalactone biosynthesis, was found around the single-nucleotide polymorphisms specific to the oryzalactone-accumulating cultivars in the long arm of chromosome 11. The metabolite analyses in Nicotiana benthamiana and rice plants overexpressing KSLX-OL indicated that KSLX-OL is responsible for the oryzalactone biosynthesis. KSLX-OL is an allele of KSL8 that is involved in the biosynthesis of another diterpenoid phytoalexin, oryzalexin S and is specifically distributed in the AA genome species. KSLX-NOL and KSLX-bar, which encode similar enzymes but are not involved in oryzalactone biosynthesis, were also found in AA genome species. The phylogenetic analyses of KSLXs, KSL8s, and related pseudogenes (KSL9s) indicated that KSLX-OL was generated from a common ancestor with KSL8 and KSL9 via gene duplication, functional differentiation, and gene fusion. The wide distributions of KSLX-OL and KSL8 in AA genome species demonstrate their long-term coexistence beyond species differentiation, suggesting a balancing selection between the genes.


Assuntos
Diterpenos , Oryza , Sesquiterpenos , Oryza/genética , Oryza/metabolismo , Fitoalexinas , Sesquiterpenos/metabolismo , Filogenia , Diterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 117(3): 840-855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37938788

RESUMO

Optimal grain-appearance quality is largely determined by grain size. To date, dozens of grain size-related genes have been identified. However, the regulatory mechanism of slender grain formation is not fully clear. We identified the OsSG34 gene by map-based cloning. A 9-bp deletion on 5'-untranslated region of OsSG34, which resulted in the expression difference between the wild-type and sg34 mutant, led to the slender grains and good transparency in sg34 mutant. OsSG34 as an α/ß fold triacylglycerol lipase affected the triglyceride content directly, and the components of cell wall indirectly, especially the lignin between the inner and outer lemmas in rice grains, which could affect the change in grain size by altering cell proliferation and expansion, while the change in starch content and starch granule arrangement in endosperm could affect the grain-appearance quality. Moreover, the OsERF71 was identified to directly bind to cis-element on the mutant site, thereby regulating the OsSG34 expression. Knockout of three OsSG34 homologous genes resulted in slender grains as well. The study demonstrated OsSG34, involved in lipid metabolism, affected grain size and quality. Our findings suggest that the OsSG34 gene could be used in rice breeding for high yield and good grain-appearance quality via marker-assisted selection and gene-editing approaches.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Endosperma/genética , Endosperma/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Amido/metabolismo
3.
Plant J ; 119(2): 861-878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761097

RESUMO

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.


Assuntos
Citoesqueleto de Actina , Germinação , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Sinalização do Cálcio , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Tubo Polínico/genética , Temperatura Alta , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Liases Intramoleculares/metabolismo , Liases Intramoleculares/genética , Inositol/metabolismo , Inositol/análogos & derivados
4.
Plant J ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887937

RESUMO

Grain weight, grain number per panicle, and the number of panicles are the three factors that determine rice (Oryza sativa L.) yield. Of these, grain weight, which not only directly determines rice yield but also influences appearance and quality, is often considered the most important for rice production. Here, we describe OsNF-YC1, a member of the NF-Y transcription factor family that regulates rice grain size. OsNF-YC1 knockout plants (osnf-yc1), obtained using CRISPR-Cas9 technology, showed reduced grain weight due to reduced width and thickness, with no change in grain length, leading to a slenderer grain shape. Downregulation of OsNF-YC1 using RNA interference resulted in similar grain phenotypes as osnf-yc1. OsNF-YC1 affects grain formation by regulating both cell proliferation and cell expansion. OsNF-YC1 localizes in both the nucleus and cytoplasm, has transcriptional activation activity at both the N-terminus and C-terminus, and is highly expressed in young panicles. OsNF-YC1 interacts with OsMADS1 both in vivo and in vitro. Further analysis showed that the histone-like structural CBFD-NFYB-HMF domain of OsNF-YC1 conserved in the OsNF-YC transcription factor family can directly interact with the MADS-box domain of OsMADS1 to enhance its transcriptional activation activity. This interaction positively regulates the expression of OsMADS55, the direct downstream target of OsMADS1. Therefore, this paper reveals a potential grain size regulation pathway controlled by an OsNF-YC1-OsMADS1-OsMADS55 module in rice.

5.
Plant J ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837713

RESUMO

The aleurone layer in cereal grains acts as a major reservoir of essential mineral nutrients, significantly influencing seed germination. However, the molecular mechanism underlying the redistribution of nutrients from the aleurone layer in the germinating seed is still not well understood. Here, in rice, we identified a plasma membrane (PM) localized magnesium transporter, MAGNESIUM RELEASE TRANSPORTER 3 (MGR3), is critical for seed germination. OsMGR3 is predominantly expressed in the aleurone layer cells of endosperm, facilitating magnesium remobilization during germination. Non-invasive Micro-test Technology assay data demonstrated that the loss-of-function of OsMGR3 restrained magnesium efflux from the aleurone layer. In the embryo/endosperm grafting experiment, we observed that the mutation of OsMGR3 in the aleurone layer suppressed the growth and differentiation of the embryo during germination. Furthermore, magnesium fluorescence imaging revealed the osmgr3 mutant seeds showed impaired exportation of aleurone layer-stored magnesium to the embryo, consequently delaying germination. Importantly, we discovered that disrupting OsMGR3 could inhibit pre-harvest sprouting without affecting rice yield and quality. Therefore, the magnesium efflux transporter OsMGR3 in the aleurone layer represents a promising genetic target for future agronomic trait improvement.

6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983834

RESUMO

The development of a plastic root system is essential for stable crop production under variable environments. Rice plants have two types of lateral roots (LRs): S-type (short and thin) and L-type (long, thick, and capable of further branching). LR types are determined at the primordium stage, with a larger primordium size in L-types than S-types. Despite the importance of LR types for rice adaptability to variable water conditions, molecular mechanisms underlying the primordium size control of LRs are unknown. Here, we show that two WUSCHEL-related homeobox (WOX) genes have opposing roles in controlling LR primordium (LRP) size in rice. Root tip excision on seminal roots induced L-type LR formation with wider primordia formed from an early developmental stage. QHB/OsWOX5 was isolated as a causative gene of a mutant that is defective in S-type LR formation but produces more L-type LRs than wild-type (WT) plants following root tip excision. A transcriptome analysis revealed that OsWOX10 is highly up-regulated in L-type LRPs. OsWOX10 overexpression in LRPs increased the LR diameter in an expression-dependent manner. Conversely, the mutation in OsWOX10 decreased the L-type LR diameter under mild drought conditions. The qhb mutants had higher OsWOX10 expression than WT after root tip excision. A yeast one-hybrid assay revealed that the transcriptional repressive activity of QHB was lost in qhb mutants. An electrophoresis mobility shift assay revealed that OsWOX10 is a potential target of QHB. These data suggest that QHB represses LR diameter increase, repressing OsWOX10 Our findings could help improve root system plasticity under variable environments.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transcriptoma
7.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698342

RESUMO

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Assuntos
Cádmio , Oryza , Proteínas de Plantas , Proteômica , Plântula , Selênio , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Selênio/farmacologia , Cádmio/toxicidade , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Perfilação da Expressão Gênica , Transcriptoma , Genes de Plantas
8.
BMC Plant Biol ; 24(1): 145, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413866

RESUMO

BACKGROUND: Alternative polyadenylation (APA) is an important pattern of post-transcriptional regulation of genes widely existing in eukaryotes, involving plant physiological and pathological processes. However, there is a dearth of studies investigating the role of APA profile in rice leaf blight. RESULTS: In this study, we compared the APA profile of leaf blight-susceptible varieties (CT 9737-613P-M) and resistant varieties (NSIC RC154) following bacterial blight infection. Through gene enrichment analysis, we found that the genes of two varieties typically exhibited distal poly(A) (PA) sites that play different roles in two kinds of rice, indicating differential APA regulatory mechanisms. In this process, many disease-resistance genes displayed multiple transcripts via APA. Moreover, we also found five polyadenylation factors of similar expression patterns of rice, highlighting the critical roles of these five factors in rice response to leaf blight about PA locus diversity. CONCLUSION: Notably, the present study provides the first dynamic changes of APA in rice in early response to biotic stresses and proposes a possible functional conjecture of APA in plant immune response, which lays the theoretical foundation for in-depth determination of the role of APA events in plant stress response and other life processes.


Assuntos
Oryza , Xanthomonas , RNA-Seq , Oryza/metabolismo , Poliadenilação/genética , Resistência à Doença/genética , Estresse Fisiológico , Xanthomonas/fisiologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
9.
BMC Plant Biol ; 24(1): 124, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373874

RESUMO

BACKGROUND: Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS: Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS: Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Mapeamento Cromossômico , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética
10.
Planta ; 260(1): 30, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879830

RESUMO

MAIN CONCLUSION: Ectopic expression of OsWOX9A induces narrow adaxially rolled rice leaves with larger bulliform cells and fewer large veins, probably through regulating the expression of auxin-related and expansin genes. The WUSCHEL-related homeobox (WOX) family plays a pivotal role in plant development by regulating genes involved in various aspects of growth and differentiation. OsWOX9A (DWT1) has been linked to tiller growth, uniform plant growth, and flower meristem activity. However, its impact on leaf growth and development in rice has not been studied. In this study, we investigated the biological role of OsWOX9A in rice growth and development using transgenic plants. Overexpression of OsWOX9A conferred narrow adaxially rolled rice leaves and altered plant architecture. These plants exhibited larger bulliform cells and fewer larger veins compared to wild-type plants. OsWOX9A overexpression also reduced plant height, tiller number, and seed-setting rate. Comparative transcriptome analysis revealed several differentially expressed auxin-related and expansin genes in OsWOX9A overexpressing plants, consistent with their roles in leaf and plant development. These results indicate that the ectopic expression of OsWOX9A may have multiple effects on the development and growth of rice, providing a more comprehensive picture of how the WOX9 subfamily contributes to leaf development and plant architecture.


Assuntos
Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Oryza , Folhas de Planta , Proteínas de Plantas , Plantas Geneticamente Modificadas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Perfilação da Expressão Gênica
11.
Plant Biotechnol J ; 22(3): 751-758, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37932934

RESUMO

Heading date (or flowering time) is a key agronomic trait that affects seasonal and regional adaption of rice cultivars. An unoptimized heading date can either not achieve a high yield or has a high risk of encountering abiotic stresses. There is a strong demand on the mild to moderate adjusting the heading date in breeding practice. Genome editing is a promising method which allows more precise and faster changing the heading date of rice. However, direct knock out of major genes involved in regulating heading date will not always achieve a new germplasm with expected heading date. It is still challenging to quantitatively adjust the heading date of elite cultivars with best adaption for broader region. In this study, we used a CRISPR-Cas9 based genome editing strategy called high-efficiency multiplex promoter-targeting (HMP) to generate novel alleles at cis-regulatory regions of three major heading date genes: Hd1, Ghd7 and DTH8. We achieved a series of germplasm with quantitative variations of heading date by editing promoter regions and adjusting the expression levels of these genes. We performed field trials to screen for the best adapted lines for different regions. We successfully expanded an elite cultivar Ningjing8 (NJ8) to a higher latitude region by selecting a line with a mild early heading phenotype that escaped from cold stress and achieved high yield potential. Our study demonstrates that HMP is a powerful tool for quantitatively regulating rice heading date and expanding elite cultivars to broader regions.


Assuntos
Oryza , Oryza/metabolismo , Locos de Características Quantitativas , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética
12.
Plant Biotechnol J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923790

RESUMO

Soil salinity has negative impacts on food security and sustainable agriculture. Ion homeostasis, osmotic adjustment and reactive oxygen species scavenging are the main approaches utilized by rice to resist salt stress. Breeding rice cultivars with high salt tolerance (ST) and yield is a significant challenge due to the lack of elite alleles conferring ST. Here, we report that the elite allele LEA12OR, which encodes a late embryogenesis abundant (LEA) protein from the wild rice Oryza rufipogon Griff., improves osmotic adjustment and increases yield under salt stress. Mechanistically, LEA12OR, as the early regulator of the LEA12OR-OsSAPK10-OsbZIP86-OsNCED3 functional module, maintains the kinase stability of OsSAPK10 under salt stress, thereby conferring ST by promoting abscisic acid biosynthesis and accumulation in rice. The superior allele LEA12OR provides a new avenue for improving ST and yield via the application of LEA12OR in current rice through molecular breeding and genome editing.

13.
New Phytol ; 241(3): 1250-1265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009305

RESUMO

Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Grão Comestível , Glucose/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo
14.
New Phytol ; 241(1): 267-282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849024

RESUMO

COLD is a major naturally occurring stress that usually causes complex symptoms and severe yield loss in crops. R-loops function in various cellular processes, including development and stress responses, in plants. However, how R-loops function in COLD responses is largely unknown in COLD susceptible crops like rice (Oryza sativa L.). We conducted DRIP-Seq along with other omics data (RNA-Seq, DNase-Seq and ChIP-Seq) in rice with or without COLD treatment. COLD treatment caused R-loop reprogramming across the genome. COLD-biased R-loops had higher GC content and novel motifs for the binding of distinct transcription factors (TFs). Moreover, R-loops can directly/indirectly modulate the transcription of a subset of COLD-responsive genes, which can be mediated by R-loop overlapping TF-centered or cis-regulatory element-related regulatory networks and lncRNAs, accounting for c. 60% of COLD-induced expression of differential genes in rice, which is different from the findings in Arabidopsis. We validated two R-loop loci with contrasting (negative/positive) roles in the regulation of two individual COLD-responsive gene expression, as potential targets for enhanced COLD resistance. Our study provides detailed evidence showing functions of R-loop reprogramming during COLD responses and provides some potential R-loop loci for genetic and epigenetic manipulation toward breeding of rice varieties with enhanced COLD tolerance.


Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Estruturas R-Loop , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
15.
Plant Cell Environ ; 47(7): 2561-2577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518060

RESUMO

Low temperature severely affects rice development and yield. Ethylene signal is essential for plant development and stress response. Here, we reported that the OsEIN2-OsEIL1/2 pathway reduced OsICE1-dependent chilling tolerance in rice. The overexpressing plants of OsEIN2, OsEIL1 and OsEIL2 exhibited severe stress symptoms with excessive reactive oxygen species (ROS) accumulation under chilling, while the mutants (osein2 and oseil1) and OsEIL2-RNA interference plants (OsEIL2-Ri) showed the enhanced chilling tolerance. We validated that OsEIL1 and OsEIL2 could form a heterxodimer and synergistically repressed OsICE1 expression by binding to its promoter. The expression of OsICE1 target genes, ROS scavenging- and photosynthesis-related genes were downregulated by OsEIN2 and OsEIL1/2, which were activated by OsICE1, suggesting that OsEIN2-OsEIL1/2 pathway might mediate ROS accumulation and photosynthetic capacity under chilling by attenuating OsICE1 function. Moreover, the association analysis of the seedling chilling tolerance with the haplotype showed that the lower expression of OsEIL1 and OsEIL2 caused by natural variation might confer chilling tolerance on rice seedlings. Finally, we generated OsEIL2-edited rice with an enhanced chilling tolerance. Taken together, our findings reveal a possible mechanism integrating OsEIN2-OsEIL1/2 pathway with OsICE1-dependent cascade in regulating chilling tolerance, providing a practical strategy for breeding chilling-tolerant rice.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Espécies Reativas de Oxigênio , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Geneticamente Modificadas , Fotossíntese , Transdução de Sinais , Etilenos/metabolismo
16.
J Exp Bot ; 75(5): 1580-1600, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38035729

RESUMO

Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.


Assuntos
Ácido Abscísico , Oryza , Brassinosteroides , Oryza/fisiologia , Solo , Meiose , Água
17.
J Exp Bot ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642102

RESUMO

The development of the embryo sac is an important factor affecting seed setting in rice. Numerous genes associated with embryo sac (ES) development have been identified in plants. However, the function of the DEAD-box RNA helicase family genes on ES is poorly known in rice. Here, we characterized a rice DEAD-box protein, OsRH52A, which was localized in the nucleus and cytoplasm and highly expressed in the floral organs in rice. The knockout mutant, rh52a, displayed partial ES sterility, including degenerated ES (21.0%) and the presence of double-female-gametophyte (DFG) structure (11.8%). The DFG developed from two functional megaspores (FM) near the chalazal end in one ovule, and 3.4% of DFG could fertilize via the sac near the micropylar pole in rh52a. OsRH52A was found to interact with OsMFS1 and ZIP4, both of which play a role in homologous recombination in rice meiosis. RNA-seq identified 234 down-regulated differentially expressed genes (DEGs) associated with reproductive development, including the two genes, OsMSP1 and HSA1b, required for female germline cell specification. Taken together, our study demonstrated that OsRH52A is essential for the development of the embryo sac and provided cytological evidence regarding the formation of DFG.

18.
J Exp Bot ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894654

RESUMO

To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has represented a challenging breeding target due to the inaccessibility of the root systems. Root hairs, single cell projections from the root epidermis, are perhaps the most overlooked component of root architecture traits. Root hairs play a central role in facilitating water, nutrient uptake, and soil cohesion. Current root hair architectures may be suboptimal under future agricultural production regimes, coupled with an increasingly variable climate. Here, we review the genetic control of root hair development in the world's three most important crops: rice, maize and wheat, and highlight conservation of gene function between monocots and the model dicot species Arabidopsis. Advances in genomic techniques including Gene-Editing combined with traditional plant breeding methods have the potential to overcome many inherent issues associated with the design of improved root hair architectures. Ultimately, this will enable detailed characterization of the effects of contrasting root hair morphology strategies on crop yield and resilience, and the development of new varieties better adapted to deliver future food security.

19.
Mol Breed ; 44(7): 49, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007057

RESUMO

Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most serious diseases worldwide. Developing blast-resistant rice varieties is an effective strategy to control the spread of rice blast and reduce the reliance on chemical pesticides. In this study, 477 sequenced rice germplasms from 48 countries were inoculated and assessed at the booting stage. We found that 23 germplasms exhibited high panicle blast resistance against M. oryzae. Genome-wide association analysis (GWAS) identified 43 quantitative trait loci (QTLs) significantly associated (P < 1.0 × 10-4) with resistance to rice panicle blast. These QTL intervals encompass four genes (OsAKT1, OsRACK1A, Bsr-k1 and Pi25/Pid3) previously reported to contribute to rice blast resistance. We selected QTLs with -Log10 (P-value) greater than 6.0 or those detected in two-year replicates, amounting to 12 QTLs, for further candidate gene analysis. Three blast resistance candidate genes (Os06g0316800, Os06g0320000, Pi25/Pid3) were identified based on significant single nucleotide polymorphisms (SNP) distributions within annotated gene sequences across these 12 QTLs and the differential expression levels among blast-resistant varieties after 72 h of inoculation. Os06g0316800 encodes a glycine-rich protein, OsGrp6, an important component of plant cell walls involved in cellular stress responses and signaling. Os06g0320000 encodes a protein with unknown function (DUF953), part of the thioredoxin-like family, which is crucial for maintaining reactive oxygen species (ROS) homeostasis in vivo, named as OsTrxl1. Lastly, Pi25/Pid3 encodes a disease resistance protein, underscoring its potential importance in plant biology. By analyzing the haplotypes of these three genes, we identified favorable haplotypes for blast resistance, providing valuable genetic resources for future rice blast resistance breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01486-5.

20.
Mol Breed ; 44(2): 10, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298743

RESUMO

Rice grain size is a key determinant of both grain yield and quality. Identification of favorable alleles for use in rice breeding may help to meet the demand for increased yield. In this study, we developed a set of 210 introgression lines (ILs) by using indica variety Huanghuazhan as the donor parent and erect-panicle japonica rice variety Wuyujing3R as the recurrent parent. A total of 133 ILs were selected for high-throughput sequencing. Using specific-locus amplified fragment (SLAF) sequencing technology, 10,103 high-quality SLAF labels evenly distributed on 12 chromosomes were obtained and selected for subsequent analysis. Using a high-density map, quantitative trait locus (QTL) mapping of grain size-related traits was performed, and a total of 38 QTLs were obtained in two environments. Furthermore, qGW2, a novel QTL that controls grain width on chromosome 2, was validated and delimited to a region of 309 kb via substitution mapping. These findings provide new genetic material and a basis for future fine mapping and cloning of favorable QTLs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01453-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA