Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2321512121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748582

RESUMO

The outer membrane (OM) of didermic gram-negative bacteria is essential for growth, maintenance of cellular integrity, and innate resistance to many antimicrobials. Its asymmetric lipid distribution, with phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet, is required for these functions. Lpt proteins form a transenvelope bridge that transports newly synthesized LPS from the inner membrane (IM) to OM, but how the bulk of phospholipids are transported between these membranes is poorly understood. Recently, three members of the AsmA-like protein family, TamB, YhdP, and YdbH, were shown to be functionally redundant and were proposed to transport phospholipids between IM and OM in Escherichia coli. These proteins belong to the repeating ß-groove superfamily, which includes eukaryotic lipid-transfer proteins that mediate phospholipid transport between organelles at contact sites. Here, we show that the IM-anchored YdbH protein interacts with the OM lipoprotein YnbE to form a functional protein bridge between the IM and OM in E. coli. Based on AlphaFold-Multimer predictions, genetic data, and in vivo site-directed cross-linking, we propose that YnbE interacts with YdbH through ß-strand augmentation to extend the continuous hydrophobic ß-groove of YdbH that is thought to shield acyl chains of phospholipids as they travel through the aqueous intermembrane periplasmic compartment. Our data also suggest that the periplasmic protein YdbL prevents extensive amyloid-like multimerization of YnbE in cells. We, therefore, propose that YdbL has a chaperone-like function that prevents uncontrolled runaway multimerization of YnbE to ensure the proper formation of the YdbH-YnbE intermembrane bridge.


Assuntos
Proteínas da Membrana Bacteriana Externa , Membrana Externa Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Homeostase , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Fosfolipídeos/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo , Membrana Celular/metabolismo
2.
EMBO Rep ; 25(4): 1711-1720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467907

RESUMO

The assembly of ß-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the ß-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of ß-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.


Assuntos
Proteínas de Escherichia coli , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
3.
EMBO Rep ; 25(1): 82-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228789

RESUMO

The E. coli Paraquat Inducible (Pqi) Pathway is a putative Gram-negative phospholipid transport system. The pathway comprises three components: an integral inner membrane protein (PqiA), a periplasmic spanning MCE family protein (PqiB) and an outer membrane lipoprotein (PqiC). Interactions between all complex components, including stoichiometry, remain uncharacterised; nevertheless, once assembled into their quaternary complex, the trio of Pqi proteins are anticipated to provide a continuous channel between the inner and outer membranes of diderms. Here, we present X-ray structures of both the native and a truncated, soluble construct of the PqiC lipoprotein, providing insight into its biological assembly, and utilise neutron reflectometry to characterise the nature of the PqiB-PqiC-membrane interaction. Finally, we employ phenotypic complementation assays to probe specific PqiC residues, which imply the interaction between PqiB and PqiC is less intimate than previously anticipated.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo
4.
Mol Microbiol ; 120(3): 397-407, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37455652

RESUMO

The ß-barrel assembly machinery (Bam) complex facilitates the assembly of outer membrane proteins (OMPs) in gram-negative bacteria. The Bam complex is conserved and essential for bacterial viability and consists of five subunits, BamA-E. BamA is the transmembrane component, and its ß-barrel domain opens laterally to allow folding and insertion of incoming OMPs. The remaining components are regulatory, among which only BamD is essential. Previous studies suggested that BamB regulates BamA directly, while BamE and BamC serve as BamD regulators. However, specific molecular details of their functions remain unknown. Our previous research demonstrated that BamE plays a specialized role in assembling the complex between the lipoprotein RcsF and its OMP partners, required for the Regulator of Capsule Synthesis (Rcs) stress response. Here, we used RcsF/OmpA as a model substrate to investigate BamE function. Our results challenge the current view that BamE only serves as a BamD regulator. We show that BamE also directly interacts with BamA. BamE interaction with both BamA and BamD is important for function. Our genetic and biochemical analysis shows that BamE stabilizes the Bam complex and promotes bidirectional signaling interaction between BamA and BamD. This BamE function becomes essential when direct BamA/BamD communication is impeded.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873038

RESUMO

The hallmark of the gram-negative bacterial envelope is the presence of the outer membrane (OM). The OM is asymmetric, comprising lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet; this critical feature confers permeability barrier function against external insults, including antibiotics. To maintain OM lipid asymmetry, the OmpC-Mla system is believed to remove aberrantly localized PLs from the OM and transport them to the inner membrane (IM). Key to the system in driving lipid trafficking is the MlaFEDB ATP-binding cassette transporter complex in the IM, but mechanistic details, including transport directionality, remain enigmatic. Here, we develop a sensitive point-to-point in vitro lipid transfer assay that allows direct tracking of [14C]-labeled PLs between the periplasmic chaperone MlaC and MlaFEDB reconstituted into nanodiscs. We reveal that MlaC spontaneously transfers PLs to the IM transporter in an MlaD-dependent manner that can be further enhanced by coupled ATP hydrolysis. In addition, we show that MlaD is important for modulating productive coupling between ATP hydrolysis and such retrograde PL transfer. We further demonstrate that spontaneous PL transfer also occurs from MlaFEDB to MlaC, but such anterograde movement is instead abolished by ATP hydrolysis. Our work uncovers a model where PLs reversibly partition between two lipid-binding sites in MlaC and MlaFEDB, and ATP binding and/or hydrolysis shift this equilibrium to ultimately drive retrograde PL transport by the OmpC-Mla system. These mechanistic insights will inform future efforts toward discovering new antibiotics against gram-negative pathogens.


Assuntos
Trifosfato de Adenosina/metabolismo , Membrana Externa Bacteriana/fisiologia , Proteínas de Escherichia coli/metabolismo , Lipídeos/química , Transporte Biológico/fisiologia , Escherichia coli , Proteínas de Escherichia coli/genética , Imidazóis
6.
J Bacteriol ; 205(10): e0018323, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37728604

RESUMO

Salmonella survive and replicate in macrophages, which normally kill bacteria by exposing them to a variety of harsh conditions and antimicrobial effectors, many of which target the bacterial cell envelope. The PhoPQ two-component system responds to the phagosome environment and induces factors that protect the outer membrane, allowing adaptation and growth in the macrophage. We show that PhoPQ induces the transcription of the tamAB operon both in vitro and in macrophages. The TamA protein is structurally similar to BamA, an essential protein in the Bam complex that assembles ß-barrel proteins in the outer membrane, while TamB is an AsmA-family protein implicated in lipid transport between the inner and outer membranes. We show that the Bam machinery is stressed in vitro under low Mg2+, low pH conditions that mimic the phagosome. Not surprisingly, mutations affecting Bam function confer significant virulence defects. Although loss of TamAB alone confers no virulence defect, a tamAB deletion confers a synthetic phenotype in bam mutant backgrounds in animals and macrophages, and in vitro upon treatment with vancomycin or sodium dodecyl sulfate. Mutations affecting YhdP, which functions in partial redundancy with TamB, also confer synthetic phenotypes with bam mutations in the animal, but this interaction is not evident in vitro. Thus, in the harsh phagocytic environment of the macrophage, the outer membrane Bam machinery is compromised, and the TamAB system, and perhaps other PhoPQ-regulated factors, is induced to compensate. It is most likely that TamAB and other systems assist the Bam complex indirectly by affecting outer membrane properties. IMPORTANCE The TamAB system has been implicated in both outer membrane protein localization and phospholipid transport between the inner and outer membranes. We show that the ß-barrel protein assembly complex, Bam, is stressed under conditions thought to mimic the macrophage phagosome. TamAB expression is controlled by the PhoPQ two-component system and induced in macrophages. This system somehow compensates for the Bam complex as evidenced by the fact that mutations affecting the two systems confer synthetic phenotypes in animals, macrophages, and in vitro in the presence of vancomycin or SDS. This study has implications concerning the role of TamAB in outer membrane homeostasis. It also contributes to our understanding of the systems necessary for Salmonella to adapt and reproduce within the macrophage phagosome.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Vancomicina , Proteínas de Escherichia coli/metabolismo , Salmonella/metabolismo , Bactérias/metabolismo , Homeostase
7.
Proc Natl Acad Sci U S A ; 117(31): 18737-18743, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675245

RESUMO

The outer membrane (OM) of gram-negative bacteria confers innate resistance to toxins and antibiotics. Integral ß-barrel outer membrane proteins (OMPs) function to establish and maintain the selective permeability of the OM. OMPs are assembled into the OM by the ß-barrel assembly machine (BAM), which is composed of one OMP-BamA-and four lipoproteins-BamB, C, D, and E. BamB, C, and E can be removed individually with only minor effects on barrier function; however, depletion of either BamA or BamD causes a global defect in OMP assembly and results in cell death. We have identified a gain-of-function mutation, bamAE470K , that bypasses the requirement for BamD. Although bamD::kan bamAE470K cells exhibit growth and OM barrier defects, they assemble OMPs with surprising robustness. Our results demonstrate that BamD does not play a catalytic role in OMP assembly, but rather functions to regulate the activity of BamA.


Assuntos
Proteínas da Membrana Bacteriana Externa , Membrana Externa Bacteriana , Proteínas de Escherichia coli , Mutação com Ganho de Função/genética , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
8.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35384832

RESUMO

The outer membrane (OM) is a formidable permeability barrier that protects Gram-negative bacteria from detergents and antibiotics. It possesses exquisite lipid asymmetry, requiring the placement and retention of lipopolysaccharides (LPS) in the outer leaflet, and phospholipids (PLs) in the inner leaflet. To establish OM lipid asymmetry, LPS are transported from the inner membrane (IM) directly to the outer leaflet of the OM. In contrast, mechanisms for PL trafficking across the cell envelope are much less understood. In this review, we summarize and discuss recent advances in our understanding of PL transport, making parallel comparisons to well-established pathways for OM lipoprotein (Lol) and LPS (Lpt). Insights into putative PL transport systems highlight possible connections back to the 'Bayer bridges', adhesion zones between the IM and the OM that had been observed more than 50 years ago, and proposed as passages for export of OM components, including LPS and PLs.


Assuntos
Proteínas da Membrana Bacteriana Externa , Membrana Externa Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Homeostase , Lipopolissacarídeos/metabolismo , Chaperonas Moleculares/metabolismo , Fosfolipídeos/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(43): 21748-21757, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591200

RESUMO

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the ß-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triazinas/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/fisiologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana
10.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817097

RESUMO

The heteropentomeric ß-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of ß-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the ß-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K ), the A-to-P change at position 496 (bamAA496P ), and the A-to-S change at position 499 (bamAA499S ), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates.IMPORTANCE The folding and insertion of ß-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric ß-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Mutação , Dobramento de Proteína , Multimerização Proteica
11.
Bioessays ; 40(4): e1700187, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29512860

RESUMO

The Gram-negative outer membrane (OM) is a potent permeability barrier against antibiotics, limiting clinical options amid mounting rates of resistance. The Lol transport pathway delivers lipoproteins to the OM. All the OM assembly machines require one or more OM lipoprotein to function, making the Lol pathway central for all aspects of OM biogenesis. The Lol pathways of many medically important species clearly deviate from the Escherichia coli paradigm, perhaps with implications for efforts to develop novel antibiotics. Moreover, recent work reveals the existence of an undiscovered alternate route for bringing lipoproteins to the OM. Here, lipoprotein transport mechanisms, and the quality control systems that underpin them, is re-examined in context of their diversity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipoproteínas/metabolismo , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
12.
Subcell Biochem ; 92: 9-37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214983

RESUMO

Gram-negative bacteria have an outer membrane that is positioned at the frontline of the cell's interaction with the environment and that serves as a barrier against noxious molecules including many antibiotics. This protective function mainly relies on lipopolysaccharide, a complex glycolipid located in the outer leaflet of the outer membrane. In this chapter we will first summarize lipopolysaccharide structure, functions and biosynthetic pathway and then we will discuss how it is transported and assembled to the cell surface. This is a remarkably complex process, as amphipathic lipopolysaccharide molecules must traverse three different cellular compartments to reach their final destination.


Assuntos
Membrana Celular/metabolismo , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/metabolismo , Transporte Biológico
13.
J Bacteriol ; 200(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109183

RESUMO

In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction of lptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting that lptA41 affects LPS transport. Indeed, lptA41 is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors of lptA41 One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion in mlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation in opgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCE Lipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective in lptA that exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.


Assuntos
Proteínas de Transporte/genética , Permeabilidade da Membrana Celular , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lipopolissacarídeos/metabolismo , Supressão Genética , Substituição de Aminoácidos , Bacitracina/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Glicosiltransferases/genética , Lipídeo A/metabolismo , Proteínas de Membrana/metabolismo , Rifampina/farmacologia , Dodecilsulfato de Sódio/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-29339384

RESUMO

The outer membrane is an essential structural component of Gram-negative bacteria that is composed of lipoproteins, lipopolysaccharides, phospholipids, and integral ß-barrel membrane proteins. A dedicated machinery, called the Lol system, ensures proper trafficking of lipoproteins from the inner to the outer membrane. The LolCDE ABC transporter is the inner membrane component, which is essential for bacterial viability. Here, we report a novel pyrrolopyrimidinedione compound, G0507, which was identified in a phenotypic screen for inhibitors of Escherichia coli growth followed by selection of compounds that induced the extracytoplasmic σE stress response. Mutations in lolC, lolD, and lolE conferred resistance to G0507, suggesting LolCDE as its molecular target. Treatment of E. coli cells with G0507 resulted in accumulation of fully processed Lpp, an outer membrane lipoprotein, in the inner membrane. Using purified protein complexes, we found that G0507 binds to LolCDE and stimulates its ATPase activity. G0507 still binds to LolCDE harboring a Q258K substitution in LolC (LolCQ258K), which confers high-level resistance to G0507 in vivo but no longer stimulates ATPase activity. Our work demonstrates that G0507 has significant promise as a chemical probe to dissect lipoprotein trafficking in Gram-negative bacteria.


Assuntos
Bactérias Gram-Negativas/metabolismo , Lipoproteínas/metabolismo , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Lipoproteínas/genética , Mutação/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética
15.
Biochem J ; 474(23): 3951-3961, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-28974626

RESUMO

Outer membrane (OM) ß-barrel proteins play important roles in importing nutrients, exporting wastes and conducting signals in Gram-negative bacteria, mitochondria and chloroplasts. The outer membrane proteins (OMPs) are inserted and assembled into the OM by OMP85 family proteins. In Escherichia coli, the ß-barrel assembly machinery (BAM) contains four lipoproteins such as BamB, BamC, BamD and BamE, and one OMP BamA, forming a 'top hat'-like structure. Structural and functional studies of the E. coli BAM machinery have revealed that the rotation of periplasmic ring may trigger the barrel ß1C-ß6C scissor-like movement that promote the unfolded OMP insertion without using ATP. Here, we report the BamA C-terminal barrel structure of Salmonella enterica Typhimurium str. LT2 and functional assays, which reveal that the BamA's C-terminal residue Trp, the ß16C strand of the barrel and the periplasmic turns are critical for the functionality of BamA. These findings indicate that the unique ß16C strand and the periplasmic turns of BamA are important for the outer membrane insertion and assembly. The periplasmic turns might mediate the rotation of the periplasmic ring to the scissor-like movement of BamA ß1C-ß6C, triggering the OMP insertion. These results are important for understanding the OMP insertion in Gram-negative bacteria, as well as in mitochondria and chloroplasts.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Periplasma/metabolismo , Plasmídeos/química , Salmonella typhimurium/metabolismo , Motivos de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Periplasma/genética , Periplasma/ultraestrutura , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/ultraestrutura
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1461-1467, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28821406

RESUMO

Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans­envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB2FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans­periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Transporte Biológico Ativo , Hidrólise , Lipopolissacarídeos/química , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1451-1460, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27760389

RESUMO

The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipogênese , Lipopolissacarídeos/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Transporte Biológico , Lipopolissacarídeos/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
18.
Adv Exp Med Biol ; 883: 255-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621472

RESUMO

The outer membrane of Gram-negative bacteria is predominantly populated by ß-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The ß-barrel assembly machinery (Bam) complex is responsible for the proper assembly of ß-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Lipoproteínas/metabolismo , Dobramento de Proteína , Transporte Proteico
19.
Protein Sci ; 33(2): e4879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131105

RESUMO

Lipopolysaccharide (LPS) synthesis in Gram-negative bacteria is completed at the outer leaflet of the inner membrane (IM). Following synthesis, seven LPS transport (Lpt) proteins facilitate the movement of LPS to the outer membrane (OM), an essential process that if disrupted at any stage has lethal effects on bacterial viability. LptB2 FG, the IM component of the Lpt bridge system, is a type VI ABC transporter that provides the driving force for LPS extraction from the IM and subsequent transport across a stable protein bridge to the outer leaflet of the OM. LptC is a periplasmic protein anchored to the IM by a single transmembrane (TM) helix intercalating within the lateral gate formed by LptF TM5 and LptG TM1. LptC facilitates the hand-off of LPS from LptB2 FG to the periplasmic protein LptA and has been shown to regulate the ATPase activity of LptB2 FG. Here, using an engineered chromosomal knockout system in Escherichia coli to assess the effects of LptC mutations in vivo, we identified six partial loss of function LptC mutations in the first unbiased alanine screen of this essential protein. To investigate the functional effects of these mutations, nanoDSF (differential scanning fluorimetry) and site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy in combination with an in vitro ATPase assay show that specific residues in the TM helix of LptC destabilize the LptB2 FGC complex and regulate the ATPase activity of LptB.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/química , Proteínas Periplásmicas/metabolismo , Transporte Biológico/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/química , Transportadores de Cassetes de Ligação de ATP/metabolismo
20.
mBio ; 14(1): e0220222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36541759

RESUMO

Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Supressão Genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Transporte Biológico/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA