Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.450
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 42: 1-26, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30735460

RESUMO

Peripheral endocrine output relies on either direct or feed-forward multi-order command from the hypothalamus. Efficient coding of endocrine responses is made possible by the many neuronal cell types that coexist in intercalated hypothalamic nuclei and communicate through extensive synaptic connectivity. Although general anatomical and neurochemical features of hypothalamic neurons were described during the past decades, they have yet to be reconciled with recently discovered molecular classifiers and neurogenetic function determination. By interrogating magnocellular as well as parvocellular dopamine, GABA, glutamate, and phenotypically mixed neurons, we integrate available information at the molecular, cellular, network, and endocrine output levels to propose a framework for the comprehensive classification of hypothalamic neurons. Simultaneously, we single out putative neuronal subclasses for which future research can fill in existing gaps of knowledge to rationalize cellular diversity through function-determinant molecular marks in the hypothalamus.


Assuntos
Hipotálamo/citologia , Neurônios/classificação , Animais , Conectoma , Humanos , Hormônios Hipotalâmicos/análise , Rede Nervosa/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Neurotransmissores/análise , Hormônios Peptídicos/análise , Análise de Célula Única
2.
Circulation ; 149(19): 1474-1489, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38533643

RESUMO

BACKGROUND: Heart failure triggers a shift in myocardial metabolic substrate utilization, favoring the ketone body 3-hydroxybutyrate as energy source. We hypothesized that 14-day treatment with ketone ester (KE) would improve resting and exercise hemodynamics and exercise capacity in patients with heart failure with reduced ejection fraction. METHODS: In a randomized, double-blind cross-over study, nondiabetic patients with heart failure with reduced ejection fraction received 14-day KE and 14-day isocaloric non-KE comparator regimens of 4 daily doses separated by a 14-day washout period. After each treatment period, participants underwent right heart catheterization, echocardiography, and blood sampling at plasma trough levels and after dosing. Participants underwent an exercise hemodynamic assessment after a second dosing. The primary end point was resting cardiac output (CO). Secondary end points included resting and exercise pulmonary capillary wedge pressure and peak exercise CO and metabolic equivalents. RESULTS: We included 24 patients with heart failure with reduced ejection fraction (17 men; 65±9 years of age; all White). Resting CO at trough levels was higher after KE compared with isocaloric comparator (5.2±1.1 L/min versus 5.0±1.1 L/min; difference, 0.3 L/min [95% CI, 0.1-0.5), and pulmonary capillary wedge pressure was lower (8±3 mm Hg versus 11±3 mm Hg; difference, -2 mm Hg [95% CI, -4 to -1]). These changes were amplified after KE dosing. Across all exercise intensities, KE treatment was associated with lower mean exercise pulmonary capillary wedge pressure (-3 mm Hg [95% CI, -5 to -1] ) and higher mean CO (0.5 L/min [95% CI, 0.1-0.8]), significantly different at low to moderate steady-state exercise but not at peak. Metabolic equivalents remained similar between treatments. In exploratory analyses, KE treatment was associated with 18% lower NT-proBNP (N-terminal pro-B-type natriuretic peptide; difference, -98 ng/L [95% CI, -185 to -23]), higher left ventricular ejection fraction (37±5 versus 34±5%; P=0.01), and lower left atrial and ventricular volumes. CONCLUSIONS: KE treatment for 14 days was associated with higher CO at rest and lower filling pressures, cardiac volumes, and NT-proBNP levels compared with isocaloric comparator. These changes persisted during exercise and were achieved on top of optimal medical therapy. Sustained modulation of circulating ketone bodies is a potential treatment principle in patients with heart failure with reduced ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05161650.


Assuntos
Insuficiência Cardíaca , Volume Sistólico , Humanos , Masculino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Feminino , Método Duplo-Cego , Idoso , Volume Sistólico/efeitos dos fármacos , Pessoa de Meia-Idade , Estudos Cross-Over , Tolerância ao Exercício/efeitos dos fármacos , Administração Oral , Função Ventricular Esquerda/efeitos dos fármacos , Resultado do Tratamento , Ésteres/administração & dosagem , Cetonas/administração & dosagem
3.
Circulation ; 149(15): 1172-1182, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38410954

RESUMO

BACKGROUND: Recent guidelines redefined exercise pulmonary hypertension as a mean pulmonary artery pressure/cardiac output (mPAP/CO) slope >3 mm Hg·L-1·min-1. A peak systolic pulmonary artery pressure >60 mm Hg during exercise has been associated with an increased risk of cardiovascular death, heart failure rehospitalization, and aortic valve replacement in aortic valve stenosis. The prognostic value of the mPAP/CO slope in aortic valve stenosis remains unknown. METHODS: In this prospective cohort study, consecutive patients (n=143; age, 73±11 years) with an aortic valve area ≤1.5 cm2 underwent cardiopulmonary exercise testing with echocardiography. They were subsequently evaluated for the occurrence of cardiovascular events (ie, cardiovascular death, heart failure hospitalization, new-onset atrial fibrillation, and aortic valve replacement) during a follow-up period of 1 year. Findings were externally validated (validation cohort, n=141). RESULTS: One cardiovascular death, 32 aortic valve replacements, 9 new-onset atrial fibrillation episodes, and 4 heart failure hospitalizations occurred in the derivation cohort, whereas 5 cardiovascular deaths, 32 aortic valve replacements, 1 new-onset atrial fibrillation episode, and 10 heart failure hospitalizations were observed in the validation cohort. Peak aortic velocity (odds ratio [OR] per SD, 1.48; P=0.036), indexed left atrial volume (OR per SD, 2.15; P=0.001), E/e' at rest (OR per SD, 1.61; P=0.012), mPAP/CO slope (OR per SD, 2.01; P=0.002), and age-, sex-, and height-based predicted peak exercise oxygen uptake (OR per SD, 0.59; P=0.007) were independently associated with cardiovascular events at 1 year, whereas peak systolic pulmonary artery pressure was not (OR per SD, 1.28; P=0.219). Peak Vo2 (percent) and mPAP/CO slope provided incremental prognostic value in addition to indexed left atrial volume and aortic valve area (P<0.001). These results were confirmed in the validation cohort. CONCLUSIONS: In moderate and severe aortic valve stenosis, mPAP/CO slope and percent-predicted peak Vo2 were independent predictors of cardiovascular events, whereas peak systolic pulmonary artery pressure was not. In addition to aortic valve area and indexed left atrial volume, percent-predicted peak Vo2 and mPAP/CO slope cumulatively improved risk stratification.


Assuntos
Estenose da Valva Aórtica , Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Prognóstico , Ecocardiografia sob Estresse/métodos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/complicações , Estudos Prospectivos , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/complicações , Débito Cardíaco , Insuficiência Cardíaca/complicações , Oxigênio
4.
Circulation ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162035

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality in patients with type 2 diabetes (T2DM). Acute increases in circulating levels of ketone body 3-hydroxybutyrate have beneficial acute hemodynamic effects in patients without T2DM with chronic heart failure with reduced ejection fraction. However, the cardiovascular effects of prolonged oral ketone ester (KE) treatment in patients with T2DM and HFpEF remain unknown. METHODS: A total of 24 patients with T2DM and HFpEF completed a 6-week randomized, double-blind crossover study. All patients received 2 weeks of KE treatment (25 g D-ß-hydroxybutyrate-(R)-1,3-butanediol × 4 daily) and isocaloric and isovolumic placebo, separated by a 2-week washout period. At the end of each treatment period, patients underwent right heart catheterization, echocardiography, and blood samples at trough levels of intervention, and then during a 4-hour resting period after a single dose. A subsequent second dose was administered, followed by an exercise test. The primary end point was cardiac output during the 4-hour rest period. RESULTS: During the 4-hour resting period, circulating 3-hydroxybutyrate levels were 10-fold higher after KE treatment (1010±56 µmol/L; P<0.001) compared with placebo (91±55 µmol/L). Compared with placebo, KE treatment increased cardiac output by 0.2 L/min (95% CI, 0.1 to 0.3) during the 4-hour period and decreased pulmonary capillary wedge pressure at rest by 1 mm Hg (95% CI, -2 to 0) and at peak exercise by 5 mm Hg (95% CI, -9 to -1). KE treatment decreased the pressure-flow relationship (∆ pulmonary capillary wedge pressure/∆ cardiac output) significantly during exercise (P<0.001) and increased stroke volume by 10 mL (95% CI, 0 to 20) at peak exercise. KE right-shifted the left ventricular end-diastolic pressure-volume relationship, suggestive of reduced left ventricular stiffness and improved compliance. Favorable hemodynamic responses of KE treatment were also observed in patients treated with sodium-glucose transporter-2 inhibitors and glucagon-like peptide-1 analogs. CONCLUSIONS: In patients with T2DM and HFpEF, a 2-week oral KE treatment increased cardiac output and reduced cardiac filling pressures and ventricular stiffness. At peak exercise, KE treatment markedly decreased pulmonary capillary wedge pressure and improved pressure-flow relationship. Modulation of circulating ketone levels is a potential new treatment modality for patients with T2DM and HFpEF. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifier: NCT05236335.

5.
Proc Natl Acad Sci U S A ; 119(12): e2111283119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286204

RESUMO

SignificanceThe adult Drosophila mushroom body (MB) is one of the most extensively studied neural circuits. However, how its circuit organization is established during development is unclear. In this study, we provide an initial characterization of the assembly process of the extrinsic neurons (dopaminergic neurons and MB output neurons) that target the vertical MB lobes. We probe the cellular mechanisms guiding the neurite targeting of these extrinsic neurons and demonstrate that Semaphorin 1a is required in several MB output neurons for their dendritic innervations to three specific MB lobe zones. Our study reveals several intriguing molecular and cellular principles governing assembly of the MB circuit.


Assuntos
Corpos Pedunculados , Semaforinas , Animais , Neurônios Dopaminérgicos , Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Neuritos , Semaforinas/genética
6.
BMC Biol ; 22(1): 95, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679719

RESUMO

BACKGROUND: The medial prefrontal cortex (mPFC) is involved in complex functions containing multiple types of neurons in distinct subregions with preferential roles. The pyramidal neurons had wide-range projections to cortical and subcortical regions with subregional preferences. Using a combination of viral tracing and fluorescence micro-optical sectioning tomography (fMOST) in transgenic mice, we systematically dissected the whole-brain connectomes of intratelencephalic (IT) and pyramidal tract (PT) neurons in four mPFC subregions. RESULTS: IT and PT neurons of the same subregion projected to different target areas while receiving inputs from similar upstream regions with quantitative differences. IT and PT neurons all project to the amygdala and basal forebrain, but their axons target different subregions. Compared to subregions in the prelimbic area (PL) which have more connections with sensorimotor-related regions, the infralimbic area (ILA) has stronger connections with limbic regions. The connection pattern of the mPFC subregions along the anterior-posterior axis showed a corresponding topological pattern with the isocortex and amygdala but an opposite orientation correspondence with the thalamus. CONCLUSIONS: By using transgenic mice and fMOST imaging, we obtained the subregional preference whole-brain connectomes of IT and pyramidal tract PT neurons in the mPFC four subregions. These results provide a comprehensive resource for directing research into the complex functions of the mPFC by offering anatomical dissections of the different subregions.


Assuntos
Conectoma , Camundongos Transgênicos , Córtex Pré-Frontal , Células Piramidais , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia , Camundongos , Masculino
7.
Semin Cell Dev Biol ; 129: 14-21, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34535385

RESUMO

Adaptive behavior is supported by context-dependent cognitive control that enables stable and flexible sensorimotor transformations. Impairments in this type of control are often attributed to dysfunction in the prefrontal cortex (PFC). However, the underlying circuit principles of PFC function that support cognitive control have remained elusive. While the complex, diverse responses of PFC neurons to cognitive variables have been studied both from the perspective of individual cell activity and overall population dynamics, these two levels have often been investigated separately. This review discusses two specific cell groups, context/brain state responsive interneuron subtypes and output decoder neurons, that might bridge conceptual frameworks derived from these two research approaches. I highlight the unique properties and functions of these cell groups and discuss how future studies leveraging their features are likely to provide a new understanding of PFC dynamics combining single-neuron and network perspectives.


Assuntos
Neurônios , Córtex Pré-Frontal , Cognição/fisiologia , Interneurônios , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia
8.
J Cell Mol Med ; 28(7): e18243, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509740

RESUMO

Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.


Assuntos
Cardiomiopatias , Heme Oxigenase (Desciclizante) , Animais , Humanos , Peixe-Zebra/genética , Isoproterenol/farmacologia , Heme Oxigenase-1/genética , Miocárdio , Hipóxia , Miócitos Cardíacos
9.
J Physiol ; 602(10): 2227-2251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38690610

RESUMO

Passive whole-body hyperthermia increases limb blood flow and cardiac output ( Q ̇ $\dot Q$ ), but the interplay between peripheral and central thermo-haemodynamic mechanisms remains unclear. Here we tested the hypothesis that local hyperthermia-induced alterations in peripheral blood flow and blood kinetic energy modulate flow to the heart and Q ̇ $\dot Q$ . Body temperatures, regional (leg, arm, head) and systemic haemodynamics, and left ventricular (LV) volumes and functions were assessed in eight healthy males during: (1) 3 h control (normothermic condition); (2) 3 h of single-leg heating; (3) 3 h of two-leg heating; and (4) 2.5 h of whole-body heating. Leg, forearm, and extracranial blood flow increased in close association with local rises in temperature while brain perfusion remained unchanged. Increases in blood velocity with small to no changes in the conduit artery diameter underpinned the augmented limb and extracranial perfusion. In all heating conditions, Q ̇ $\dot Q$ increased in association with proportional elevations in systemic vascular conductance, related to enhanced blood flow, blood velocity, vascular conductance and kinetic energy in the limbs and head (all R2 ≥ 0.803; P < 0.001), but not in the brain. LV systolic (end-systolic elastance and twist) and diastolic functional profiles (untwisting rate), pulmonary ventilation and systemic aerobic metabolism were only altered in whole-body heating. These findings substantiate the idea that local hyperthermia-induced selective alterations in peripheral blood flow modulate the magnitude of flow to the heart and Q ̇ $\dot Q$ through changes in blood velocity and kinetic energy. Localised heat-activated events in the peripheral circulation therefore affect the human heart's output. KEY POINTS: Local and whole-body hyperthermia increases limb and systemic perfusion, but the underlying peripheral and central heat-sensitive mechanisms are not fully established. Here we investigated the regional (leg, arm and head) and systemic haemodynamics (cardiac output: Q ̇ $\dot Q$ ) during passive single-leg, two-leg and whole-body hyperthermia to determine the contribution of peripheral and central thermosensitive factors in the control of human circulation. Single-leg, two-leg, and whole-body hyperthermia induced graded increases in leg blood flow and Q ̇ $\dot Q$ . Brain blood flow, however, remained unchanged in all conditions. Ventilation, extracranial blood flow and cardiac systolic and diastolic functions only increased during whole-body hyperthermia. The augmented Q ̇ $\dot Q$ with hyperthermia was tightly related to increased limb and head blood velocity, flow and kinetic energy. The findings indicate that local thermosensitive mechanisms modulate regional blood velocity, flow and kinetic energy, thereby controlling the magnitude of flow to the heart and thus the coupling of peripheral and central circulation during hyperthermia.


Assuntos
Débito Cardíaco , Hipertermia , Humanos , Masculino , Adulto , Hipertermia/fisiopatologia , Débito Cardíaco/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Febre/fisiopatologia , Adulto Jovem , Temperatura Alta , Hemodinâmica
10.
J Physiol ; 602(4): 619-632, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329227

RESUMO

Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Recently, the transduction of resting bursts of muscle SNA (MSNA) has been investigated and shown to have a role in the maintenance of blood pressure through changes in vascular tone in humans. In the present study, we investigate whether directly recorded resting cardiac SNA (CSNA) regulates heart rate (HR), coronary blood flow (CoBF), coronary vascular conductance (CVC), cardiac output (CO) and mean arterial pressure. Instrumentation was undertaken to record CSNA and relevant vascular variables in conscious sheep. Recordings were performed at baseline, as well as after the infusion of a ß-adrenoceptor blocker (propranolol) to determine the role of ß-adrenergic signalling in sympathetic transduction in the heart. The results show that after every burst of CSNA, there was a significant effect of time on HR (n = 10, ∆: +2.1 ± 1.4 beats min-1 , P = 0.002) and CO (n = 8, ∆: +100 ± 150 mL min-1 , P = 0.002) was elevated, followed by an increase in CoBF (n = 9, ∆: +0.76 mL min-1 , P = 0.001) and CVC (n = 8, ∆: +0.0038 mL min-1  mmHg-1 , P = 0.0028). The changes in HR were graded depending on the size and pattern of CSNA bursts. The HR response was significantly attenuated after the infusion of propranolol. Our study is the first to explore resting sympathetic transduction in the heart, suggesting that CSNA can dynamically change HR mediated by an action on ß-adrenoceptors. KEY POINTS: Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Previous studies have examined sympathetic transduction primarily in the skeletal muscle and shown that bursts of muscle SNA alter blood flow to skeletal muscle and mean arterial pressure, although this has not been examined in the heart. We investigated sympathetic transduction in the heart and show that, in the conscious condition, the size of bursts of SNA to the heart can result in incremental increases in heart rate and coronary blood flow mediated by ß-adrenoceptors. The pattern of bursts of SNA to the heart also resulted in incremental increases in heart rate mediated by ß-adrenoceptors. This is the first study to explore the transduction of bursts of SNA to the heart.


Assuntos
Coração , Propranolol , Humanos , Ovinos , Animais , Propranolol/farmacologia , Coração/inervação , Pressão Arterial , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiologia , Receptores Adrenérgicos
11.
Pflugers Arch ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39162833

RESUMO

Neurons in central nervous systems receive multiple synaptic inputs and transform them into a largely standardized output to their target cells-the action potential. A simplified model posits that synaptic signals are integrated by linear summation and passive propagation towards the axon initial segment, where the threshold for spike generation is either crossed or not. However, multiple lines of research during past decades have shown that signal integration in individual neurons is much more complex, with important functional consequences at the cellular, network, and behavioral-cognitive level. The interplay between concomitant excitatory and inhibitory postsynaptic potentials depends strongly on the relative timing and localization of the respective synapses. In addition, dendrites contain multiple voltage-dependent conductances, which allow scaling of postsynaptic potentials, non-linear input processing, and compartmentalization of signals. Together, these features enable a rich variety of single-neuron computations, including non-linear operations and synaptic plasticity. Hence, we have to revise over-simplified messages from textbooks and use simplified computational models like integrate-and-fire neurons with some caution. This concept article summarizes the most important mechanisms of dendritic integration and highlights some recent developments in the field.

12.
Ecol Lett ; 27(3): e14390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549267

RESUMO

Chance pervades life. In turn, life histories are described by probabilities (e.g. survival and breeding) and averages across individuals (e.g. mean growth rate and age at maturity). In this study, we explored patterns of luck in lifetime outcomes by analysing structured population models for a wide array of plant and animal species. We calculated four response variables: variance and skewness in both lifespan and lifetime reproductive output (LRO), and partitioned them into contributions from different forms of luck. We examined relationships among response variables and a variety of life history traits. We found that variance in lifespan and variance in LRO were positively correlated across taxa, but that variance and skewness were negatively correlated for both lifespan and LRO. The most important life history trait was longevity, which shaped variance and skew in LRO through its effects on variance in lifespan. We found that luck in survival, growth, and fecundity all contributed to variance in LRO, but skew in LRO was overwhelmingly due to survival luck. Rapidly growing populations have larger variances in LRO and lifespan than shrinking populations. Our results indicate that luck-induced genetic drift may be most severe in recovering populations of species with long mature lifespan and high iteroparity.


Assuntos
Características de História de Vida , Reprodução , Humanos , Animais , Reprodução/genética , Fertilidade , Deriva Genética , Longevidade/fisiologia
13.
J Neurophysiol ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196985

RESUMO

The manner in which motoneurons respond to excitatory and inhibitory inputs depends strongly on how their intrinsic properties are influenced by the neuromodulators serotonin and noradrenaline. These neuromodulators enhance the activation of voltage­gated channels that generate persistent (long-lasting) inward sodium and calcium currents (PICs) into the motoneurons. PICs are crucial for initiating, accelerating, and maintaining motoneuron firing. A greater accessibility to state-of-the-art techniques that allows both the estimation and examination of PIC modulation in tens of motoneurons in vivo has rapidly evolved our knowledge of how motoneurons amplify and prolong the effects of synaptic input. We are now in a position to gain substantial mechanistic insight into the role of PICs in motor control at an unprecedented pace. The present review briefly describes the effects of PICs on motoneuron firing and the methods available for estimating them before presenting the emerging evidence of how PICs can be modulated in health and disease. Our rapidly developing knowledge of the potent effects of PICs on motoneuron firing has the potential to improve our understanding of how we move, and points to new approaches to improve motor control. Finally, gaps in our understanding are highlighted and methodological advancements suggested to encourage readers to explore outstanding questions to further elucidate PIC physiology.

14.
Am J Physiol Heart Circ Physiol ; 327(2): H509-H517, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38874616

RESUMO

Aging is associated with a significant decline in aerobic capacity assessed by maximal exercise oxygen consumption (V̇o2max). The relative contributions of the specific V̇o2 components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A - V)O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age: 21-96 yr old; average follow-up: 12.6 yr old) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. V̇o2peak, a surrogate of V̇o2max, was used to assess aerobic capacity during upright cycle ergometry. Peak exercise left ventricular volumes, heart rate, and CO were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A - V)O2diff,peak from COpeak and V̇o2peak. In unadjusted models, V̇o2peak, (A - V)O2diff,peak, and COpeak declined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in V̇o2peak and (A - V)O2diff,peak were observed with advanced entry age but not in COpeak. The association between the declines in V̇o2peak and (A - V)O2diff,peak was stronger among those ≥50 yr old compared with their younger counterparts, but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak V̇o2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A - V)O2diff are warranted.NEW & NOTEWORTHY The age-associated decline in aerobic exercise performance over an average of 13 yr in community-dwelling healthy individuals is more closely associated with decreased peripheral oxygen utilization rather than decreased cardiac output. This association was more evident in older than younger individuals. These findings suggest that future studies with larger samples examine whether these associations vary across the age range and whether the decline in cardiac output plays a greater role earlier in life. In addition, studies focused on determinants of peripheral oxygen uptake by exercising muscle may guide the selection of preventive strategies designed to maintain physical fitness with advancing age.


Assuntos
Envelhecimento , Débito Cardíaco , Consumo de Oxigênio , Humanos , Idoso , Pessoa de Meia-Idade , Masculino , Consumo de Oxigênio/fisiologia , Feminino , Adulto , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Estudos Longitudinais , Idoso de 80 Anos ou mais , Adulto Jovem , Baltimore , Fatores Etários , Tolerância ao Exercício , Teste de Esforço
15.
Small ; 20(16): e2308469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032176

RESUMO

Triboelectric nanogenerators (TENGs) have manifested a remarkable potential for harvesting environmental energy and have the prospects to be utilized for various uses, for instance, self-powered sensing devices, flexible wearables, and marine corrosion protection. However, the potential for further development of TENGs is restricted on account of their low output power that in turn is determined by their surface charge density. The current review majorly focuses on the selection and optimization of triboelectric materials. Subsequently, various methods capable of enhancing the surface charge density of TENGs, including environmental regulation, charge excitation, charge pumping, electrostatic breakdown, charge trapping, and liquid-solid structure are comprehensively reviewed. Lastly, the review is concluded by highlighting the existing challenges in enhancing the surface charge density of TENGs and exploring potential opportunities for future research endeavors in this area.

16.
Small ; 20(11): e2304308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37936314

RESUMO

Thermal energy harvesting provides an opportunity for multi-node systems to achieve self-power autonomy. Thermoelectric generators (TEGs), either by thermocouple arrangement with higher-aspect-ratios or thermoelectric films overlay, are limited by the small temperature difference and its short-duration (less than dozens of minutes), hindering the harvesting efficiency. Here, by introducing thermal diodes with dual-direction thermal regulation ability to optimize the heat flux path, the proposed TEGs exhibit enhanced power-supply capability with unprecedented long-duration (more than hours). In contrast with conventional TEGs with fixed-leg dimensions enabled single output, these compact-TEGs can supply up to fourteen output-channels for selection, the produced power ranges from 1.11 to 921.99 µW, open circuit voltage ranges from 8.07 to 51.32 mV, when the natural temperature difference is 53.84 °C. Compared to the most recent TEGs, the proposed TEGs in this study indicate higher power (more than hundreds times) and much longer output duration (2.4-120 times) in a compact manner.

17.
Small ; 20(12): e2307843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948442

RESUMO

Covalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF-based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox-active COF (TFPDQ-COF) with redox activity under solvent-free conditions to prepare TFPDQ-COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g-1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox-active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg-1 at a power density of 950 W kg-1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g-1 and stable regeneration performance is attained for TFPDQGO-based HCDI. This study highlights the new opportunities of COF-based hybrid materials acting as high-performance supercapacitor and HCDI electrode materials.

18.
Small ; : e2402651, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747046

RESUMO

SnTe, as a potential medium-temperature thermoelectric material, reaches a maximum power factor (PF) usually above 750 K, which is not conducive to continuous high-power output in practical applications. In this study, PF is maintained at high values between 18.5 and 25 µW cm-1 K-2 for Sn0.99In0.01Te-x wt% tourmaline samples within the temperature range of 323 to 873 K, driving the highest PFeng of 1.2 W m-1 K-1 and PFave of 22.5 µW cm-1 K-2, over 2.5 times that of pristine SnTe. Such an extraordinary PF is attributed to the synergy of resonant levels and Sn vacancy suppression. Specifically, the Seebeck coefficient increases dramatically, reaching 88 µV K-1 at room temperature. Meanwhile, by Sn vacancy suppression, carrier concentration, and mobility are optimized to ≈1019 cm-3 and 740 cm2 V-1 s-1, respectively. With the tourmaline compositing, Sn vacancies are further suppressed and the thermal conductivity simultaneously decreases, with the minimum lattice thermal conductivity of 0.9 W m-1 K-1. Finally, the zT value ≈0.8 is obtained in the Sn0.99In0.01Te sample. The peak of the power output density reaches 0.89 W cm-2 at a temperature difference of 600 K. Such SnTe alloys with high and "temperature-independent" PF will offer an option for realizing high output power in thermoelectric devices.

19.
Small ; 20(34): e2401706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38602199

RESUMO

In frigid regions, it is imperative to possess functionality materials that are ultrastrong, reusable, and economical, providing self-generated heat and electricity. One promising solution is a solar‒thermal‒electric (STE) generator, composed of solar‒thermal conversion phase change composites (PCCs) and temperature-difference power-generation-sheets. However, the existing PCCs face challenges with conflicting requirements for solar‒thermal conversion efficiency and mechanical robustness, mainly due to monotonous functionalized aerogel framework. Herein, a novel starch vitrimer aerogel is proposed that incorporates orientational distributed carboxylated carbon nanotubes (CCNT) to create PCC. This innovative design integrates large through-holes, mechanical robustness, and superior solar‒thermal conversion. Remarkably, PCC with only 0.8 wt.% CCNT loading achieves 85.8 MPa compressive strength, 102.4 °C at 200 mW cm-2 irradiation with an impressive 92.9% solar-thermal conversion efficiency. Noteworthy, the STE generator assembled with PCC harvests 99.1 W m-2 output power density, surpassing other reported STE generators. Strikingly, even under harsh conditions of -10 °C and 10 mW cm‒2 irradiation, the STE generator maintains 20 °C for PCC with 325 mV output voltage and 45 mA current, showcasing enhanced electricity generation in colder environments. This study introduces a groundbreaking STE generator, paving the way for self-sufficient heat and electricity supply in cold regions.

20.
Small ; 20(26): e2310811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299466

RESUMO

Osmotic energy, as a renewable clean energy with huge energy density and stable yield, has received widespread attention over the past decades. Reverse electrodialysis (RED) based on ion-exchange membranes is an important method of obtaining osmotic energy from salinity gradients. The preparation of ion-exchange membranes with both high ion selectivity and ion permeability is in constant exploration. In this work, metal hydroxide-organic framework (MHOF) membranes are successfully prepared onto porous anodic aluminum oxide (AAO) membranes by a facile hydrothermal method to form Ni2(OH)2@AAO composite membranes, used for osmotic energy conversion. The surface is negatively charged with cation selectivity, and the asymmetric structure and extreme hydrophilicity enhance the ionic flux for effective capture of osmotic energy. The maximum output power density of 5.65 W m-2 at a 50-fold KCl concentration gradient is achieved, which exceeds the commercial benchmark of 5 W m-2. Meanwhile, the composite membrane can also show good performance in different electrolyte solutions and acid-base environments. This work provides a new avenue for the construction and application of MHOF membranes in efficient osmotic energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA