Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Popul Biol ; 138: 43-56, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610661

RESUMO

Classical theory in population genetics includes derivation of the stationary distribution of allele frequencies under balance between selection, genetic drift, and mutation. Here we investigate the simplest generalization of these single locus models to quantitative genetics with many loci, assuming simple additive effects on a set of phenotypes and a linear approximation to the fitness function. Genetic effects and pleiotropy are simulated by a prescribed stochastic model. Our goal is to analyze the structure of the G-matrix at stasis when the model is not very close to being neutral. The smallest eigenvalue of the G-matrix is practically zero by Fisher's fundamental theorem for natural selection and the fitness function is approximately a linear function of the corresponding eigenvector. Evolution of genetic trade-offs is closely linked to the fitness function. If a single locus never codes for more than two traits, then additive genetic covariance between two phenotype components always has the opposite sign of the product of their coefficients in the fitness function under no mutation, a pattern that is likely to occur frequently also in more complex models. In our major examples only 1-2 percent of the loci are over-dominant for fitness, but they still account for practically all dominance variance in fitness as well as all contributions to the G-matrix. These analyses show that the structure of the G-matrix reveals important information about the contribution of different traits to fitness.


Assuntos
Deriva Genética , Modelos Genéticos , Aptidão Genética , Genética Populacional , Fenótipo , Seleção Genética
2.
BMC Genomics ; 19(1): 910, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541432

RESUMO

BACKGROUND: Quantitative trait loci (QTL) mapping provides a powerful tool to unravel the genetic bases of cotton yield and its components, as well as their heterosis. In the present study, the genetic basis underlying inbreeding depression and heterosis for yield and yield components of upland cotton was investigated in recombinant inbred line (RIL), immortalized F2 (IF2), and two backcross (BCF1) populations based on a high-density SNP linkage map across four environments. RESULTS: Significant inbreeding depression of fruit branches per plant (FB), boll numbers per plant (BN), seed cotton yield (SY), and lint yield (LY) in RIL population and high levels of heterosis for SY, LY, and boll weight (BW) in IF2 and two BCF1 populations were observed. A total of 285 QTLs were identified in the four related populations using a composite interval mapping approach. In the IF2 population, 26.60% partially dominant (PD) QTLs and 71.28% over-dominant (OD) QTLs were identified. In two BCF1 populations, 42.41% additive QTLs, 4.19% PD QTLs, and 53.40% OD QTLs were detected. For multi-environment analysis, phenotypic variances (PV) explained by e-QTLs were higher than those by m-QTLs in each of the populations, and the average PV of m-QTLs and e-QTLs explained by QTL × environment interactions occupied a considerable proportion of total PV in all seven datasets. CONCLUSIONS: At the single-locus level, the genetic bases of heterosis varied in different populations. Partial dominance and over-dominance were the main cause of heterosis in the IF2 population, while additive effects and over-dominance were the main genetic bases of heterosis in two BCF1 populations. In addition, the various genetic components to heterosis presented trait specificity. In the multi-environment model analysis, epistasis was a common feature of most loci associated with inbreeding depression and heterosis. Furthermore, the environment was a critical factor in the expression of these m-QTLs and e-QTLs. Altogether, additive effects, over-dominance, epistasis and environmental interactions all contributed to the heterosis of yield and its components in upland cotton, with over-dominance and epistasis more important than the others.


Assuntos
Genes de Plantas , Gossypium/genética , Vigor Híbrido/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fibra de Algodão/análise , Cruzamentos Genéticos , Ligação Genética , Genótipo , Fenótipo
3.
Mar Biotechnol (NY) ; 25(2): 235-246, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36653591

RESUMO

Heterosis, also known as hybrid vigor, is widely used in aquaculture, but the molecular causes for this phenomenon remain obscure. Here, we conducted a transcriptome analysis to unveil the gene expression patterns and molecular bases underlying thermo-resistant heterosis in Crassostrea gigas ♀ × Crassostrea angulata ♂ (GA) and C. angulata ♀ × C. gigas ♂ (AG). About 505 million clean reads were obtained, and 38,210 genes were identified, of which 3779 genes were differentially expressed between the reciprocal hybrids and purebreds. The global gene expression levels were toward the C. gigas genome in the reciprocal hybrids. In GA and AG, 95.69% and 92.00% of the differentially expressed genes (DEGs) exhibited a non-additive expression pattern, respectively. We observed all gene expression modes, including additive, partial dominance, high and low dominance, and under- and over-dominance. Of these, 77.52% and 50.00% of the DEGs exhibited under- or over-dominance in GA and AG, respectively. The over-dominance DEGs common to reciprocal hybrids were significantly enriched in protein folding, protein refolding, and intrinsic apoptotic signaling pathway, while the under-dominance DEGs were significantly enriched in cell cycle. As possible candidate genes for thermo-resistant heterosis, GRP78, major egg antigen, BAG, Hsp70, and Hsp27 were over-dominantly expressed, while MCM6 and ANAPC4 were under-dominantly expressed. This study extends our understanding of the thermo-resistant heterosis in oysters.


Assuntos
Crassostrea , Vigor Híbrido , Animais , Vigor Híbrido/genética , Crassostrea/genética , Transcriptoma , Perfilação da Expressão Gênica , Genoma , Regulação da Expressão Gênica de Plantas , Hibridização Genética
4.
Evolution ; 75(5): 1011-1029, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675041

RESUMO

Self-fertilization commonly occurs in hermaphroditic species, either occasionally or as the main reproductive mode. It strongly affects the genetic functioning of a population by increasing homozygosity and genetic drift and reducing the effectiveness of recombination. Balancing selection is a form of selection that maintains polymorphism, which has been extensively studied in outcrossing species. Yet, despite recent developments, the analysis of balancing selection in partially selfing species is limited to specific cases and a general treatment is still lacking. In particular, it is unclear whether selfing globally reduced the efficacy of balancing selection as in the well-known case of overdominance. I provide a unifying framework, quantify how selfing affects the maintenance of polymorphism and the efficacy of the different form of balancing selection, and show that they can be classified into two main categories: overdominance-like selection (including true overdominance, selection variable in space and time, and antagonistic selection), which is strongly affected by selfing, and negative frequency dependent selection, which is barely affected by selfing, even at multiple loci. I also provide simple analytical results for all cases under the assumption of weak selection. This framework provides theoretical background to analyze the genomic signature of balancing selection in partially selfing species. It also sheds new light on the evolution of selfing species, including the evolution of selfing syndrome, the interaction with pathogens, and the evolutionary fate of selfing lineages.


Assuntos
Organismos Hermafroditas/genética , Seleção Genética , Autofertilização/genética , Animais , Modelos Genéticos , Plantas/genética , Polimorfismo Genético
5.
Front Genet ; 7: 72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200081

RESUMO

Heterosis describes a phenotypic phenomenon of hybrid superiority over its homozygous parents. It is a genetically intriguing phenomenon with great importance for food production. Also called hybrid-vigor, heterosis is created by non-additive effects of genes in a heterozygous hybrid made by crossing two distinct homozygous parents. Few models have been proposed to explain how the combination of parental genes creates an exceptional hybrid performance. Over-dominant mode of inheritance is an attractive model since a single gene can potentially create the heterotic effect, but only a few such loci have been identified. To a collection of 120 hybrids, made by crossing 16 divergent Saccharomyces cerevisiae yeast strains, we applied a method for mapping heterozygous loci that non-additively contribute to heterotic growth at 37°. Among 803 candidate loci that were mapped, five were tested for their heterotic effect by analyzing backcrosses and F2 populations in a specific hybrid background. Consistently with the many mapped loci, specific analyses confirmed the minor heterotic effect of the tested candidate loci. Allele-replacement analyses of one gene, AEP3, further supported its heterotic effect. In addition to over-dominant effects, the contribution of epistasis to heterosis was evident from F2 population and allele-replacement analyses. Pairs of over-dominant genes contributed synergistically to heterosis. We show that minor over-dominant effects of multiple genes can combine to condition heterosis, similarly to loci affecting other quantitative traits. Furthermore, by finding of epistatic interactions between loci that each of them individually has an over-dominant effect on heterosis, we demonstrate how hybrid advantage could benefit from a synergistic combination of two interaction types (over-dominant and synergistic epistatic). Thus, by portraying the underlying genetic complexity, these findings advance our understanding of heterosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA