Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458201

RESUMO

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Assuntos
Ciclinas , Reparo de Erro de Pareamento de DNA , Animais , Ciclinas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interfase , Mamíferos/metabolismo
2.
Mol Cell ; 75(1): 117-130.e6, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31101499

RESUMO

Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , DNA Glicosilases/genética , Reparo do DNA/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Guanina/análogos & derivados , Telômero/efeitos da radiação , Divisão Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , DNA Glicosilases/deficiência , Replicação do DNA/efeitos da radiação , Expressão Gênica , Guanina/agonistas , Guanina/biossíntese , Células HeLa , Humanos , Luz/efeitos adversos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Optogenética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Oxigênio Singlete/agonistas , Oxigênio Singlete/metabolismo , Telômero/metabolismo , Homeostase do Telômero/efeitos da radiação
3.
Proc Natl Acad Sci U S A ; 120(25): e2220132120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307476

RESUMO

Understanding and predicting the outcome of the interaction of light with DNA has a significant impact on the study of DNA repair and radiotherapy. We report on a combination of femtosecond pulsed laser microirradiation at different wavelengths, quantitative imaging, and numerical modeling that yields a comprehensive picture of photon-mediated and free-electron-mediated DNA damage pathways in live cells. Laser irradiation was performed under highly standardized conditions at four wavelengths between 515 nm and 1,030 nm, enabling to study two-photon photochemical and free-electron-mediated DNA damage in situ. We quantitatively assessed cyclobutane pyrimidine dimer (CPD) and γH2AX-specific immunofluorescence signals to calibrate the damage threshold dose at these wavelengths and performed a comparative analysis of the recruitment of DNA repair factors xeroderma pigmentosum complementation group C (XPC) and Nijmegen breakage syndrome 1 (Nbs1). Our results show that two-photon-induced photochemical CPD generation dominates at 515 nm, while electron-mediated damage dominates at wavelengths ≥620 nm. The recruitment analysis revealed a cross talk between nucleotide excision and homologous recombination DNA repair pathways at 515 nm. Numerical simulations predicted electron densities and electron energy spectra, which govern the yield functions of a variety of direct electron-mediated DNA damage pathways and of indirect damage by •OH radicals resulting from laser and electron interactions with water. Combining these data with information on free electron-DNA interactions gained in artificial systems, we provide a conceptual framework for the interpretation of the wavelength dependence of laser-induced DNA damage that may guide the selection of irradiation parameters in studies and applications that require the selective induction of DNA lesions.


Assuntos
Dano ao DNA , Elétrons , Dímeros de Pirimidina , Reparo do DNA , Lasers
4.
Mol Cell ; 65(5): 818-831.e5, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28216227

RESUMO

Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1.


Assuntos
Dano ao DNA , Quinases Relacionadas a NIMA/metabolismo , Estresse Oxidativo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/enzimologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Quinases Relacionadas a NIMA/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Interferência de RNA , Complexo Shelterina , Telômero/genética , Telômero/efeitos da radiação , Proteínas de Ligação a Telômeros/genética , Fatores de Tempo , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
5.
Mutagenesis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736258

RESUMO

DNA ligase (LIG) I and IIIα finalize base excision repair (BER) by sealing a nick product after nucleotide insertion by DNA polymerase (pol) ß at the downstream steps. We previously demonstrated that a functional interplay between polß and BER ligases is critical for efficient repair, and polß mismatch or oxidized nucleotide insertions confound final ligation step. Yet, how targeting downstream enzymes with small molecule inhibitors could affect this coordination remains unknown. Here, we report that DNA ligase inhibitors, L67 and L82-G17, slightly enhance hypersensitivity to oxidative stress-inducing agent, KBrO3, in polß+/+ cells more than polß-/- null cells. We showed less efficient ligation after polß nucleotide insertions in the presence of the DNA ligase inhibitors. Furthermore, the mutations at the ligase inhibitor binding sites (G448, R451, A455) of LIG1 significantly affect nick DNA binding affinity and nick sealing efficiency. Finally, our results demonstrated that the BER ligases seal a gap repair intermediate by the effect of polß inhibitor that diminishes gap filling activity. Overall, our results contribute to understand how the BER inhibitors against downstream enzymes, polß, LIG1, and LIGIIIα, could impact the efficiency of gap filling and subsequent nick sealing at the final steps leading to the formation of deleterious repair intermediates.

6.
J Biochem Mol Toxicol ; 38(7): e23764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963172

RESUMO

Obesity is an established risk factor for numerous malignancies, although it remains uncertain whether the disease itself or weight-loss drugs are responsible for a greater predisposition to cancer. The objective of the current study was to determine the impact of dulaglutide on genetic and epigenetic DNA damage caused by obesity, which is a crucial factor in the development of cancer. Mice were administered a low-fat or high-fat diet for 12 weeks, followed by a 5-week treatment with dulaglutide. Following that, modifications of the DNA bases were examined using the comet assay. To clarify the underlying molecular mechanisms, oxidized and methylated DNA bases, changes in the redox status, levels of inflammatory cytokines, and the expression levels of some DNA repair genes were evaluated. Animals fed a high-fat diet exhibited increased body weights, elevated DNA damage, oxidation of DNA bases, and DNA hypermethylation. In addition, obese mice showed altered inflammatory responses, redox imbalances, and repair gene expressions. The findings demonstrated that dulaglutide does not exhibit genotoxicity in the investigated conditions. Following dulaglutide administration, animals fed a high-fat diet demonstrated low DNA damage, less oxidation and methylation of DNA bases, restored redox balance, and improved inflammatory responses. In addition, dulaglutide treatment restored the upregulated DNMT1, Ogg1, and p53 gene expression. Overall, dulaglutide effectively maintains DNA integrity in obese animals. It reduces oxidative DNA damage and hypermethylation by restoring redox balance, modulating inflammatory responses, and recovering altered gene expressions. These findings demonstrate dulaglutide's expediency in treating obesity and its associated complications.


Assuntos
Dano ao DNA , Metilação de DNA , Reparo do DNA , Dieta Hiperlipídica , Peptídeos Semelhantes ao Glucagon , Fragmentos Fc das Imunoglobulinas , Oxirredução , Proteínas Recombinantes de Fusão , Animais , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Peptídeos Semelhantes ao Glucagon/farmacologia , Metilação de DNA/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/farmacologia , Dano ao DNA/efeitos dos fármacos , Camundongos , Reparo do DNA/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Oxirredução/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/genética , Estresse Oxidativo/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL
7.
Nano Lett ; 23(13): 6193-6201, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387510

RESUMO

Therapy-induced DNA damage is the most common strategy to inhibit tumor cell proliferation, but the therapeutic efficacy is limited by DNA repair machinery. Carrier-free nanoproteolysis targeting chimeras (PROTACs), designed as SDNpros, have been developed to enhance photodynamic therapy (PDT) by blocking the DNA damage repair pathway through BRD4 degradation. Specifically, SDNpros are constructed through noncovalent interactions between the photosensitizer of chlorine e6 (Ce6) and PROTACs of BRD4 degrader (dBET57) via self-assembly. SDNpro has favorable dispersibility and a uniform nanosize distribution without drug excipients. Upon light irradiation, SDNpro produces abundant reactive oxygen species (ROS) to induce DNA oxidative damage. Meanwhile, the DNA repair pathway would be interrupted by the concurrent degradation of BRD4, which could intensify the oxidative DNA damage and elevate PDT efficiency. Beneficially, SDNpro suppresses tumor growth and avoids systemic side effects, providing a promising strategy to promote the clinical translation of PROTACs for tumor treatment.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Proteínas Nucleares , Excipientes , Linhagem Celular Tumoral , Fatores de Transcrição , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dano ao DNA , Porfirinas/uso terapêutico
8.
J Biol Chem ; 298(7): 102102, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667440

RESUMO

Oxidative DNA damage contributes to aging and the pathogenesis of numerous human diseases including cancer. 8-hydroxyguanine (8-oxoG) is the major product of oxidative DNA lesions. Although OGG1-mediated base excision repair is the primary mechanism for 8-oxoG removal, DNA mismatch repair has also been implicated in processing oxidative DNA damage. However, the mechanism of the latter is not fully understood. Here, we treated human cells defective in various 8-oxoG repair factors with H2O2 and performed biochemical, live cell imaging, and chromatin immunoprecipitation sequencing analyses to determine their response to the treatment. We show that the mismatch repair processing of oxidative DNA damage involves cohesive interactions between mismatch recognition protein MutSα, histone mark H3K36me3, and H3K36 trimethyltransferase SETD2, which activates the ATM DNA damage signaling pathway. We found that cells depleted of MutSα or SETD2 accumulate 8-oxoG adducts and fail to trigger H2O2-induced ATM activation. Furthermore, we show that SETD2 physically interacts with both MutSα and ATM, which suggests a role for SETD2 in transducing DNA damage signals from lesion-bound MutSα to ATM. Consistently, MutSα and SETD2 are highly coenriched at oxidative damage sites. The data presented here support a model wherein MutSα, SETD2, ATM, and H3K36me3 constitute a positive feedback loop to help cells cope with oxidative DNA damage.


Assuntos
Reparo de Erro de Pareamento de DNA , Histona-Lisina N-Metiltransferase , Proteínas MutS , Estresse Oxidativo , Dano ao DNA , Código das Histonas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas MutS/genética , Proteínas MutS/metabolismo
9.
New Phytol ; 238(2): 817-834, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651012

RESUMO

SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates ß-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.


Assuntos
Sumoilação , Ubiquitina-Proteína Ligases , Temperatura , Ubiquitina-Proteína Ligases/metabolismo , Estresse Oxidativo , Dano ao DNA
10.
Microb Pathog ; 174: 105937, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36496058

RESUMO

Helicobacter pylori (H. pylori), a gram-negative bacterial microbiological carcinogen, has been identified as the leading jeopardy feature for developing human gastric cancer (GC). As a result, inhibiting H. pylori growth has been identified as an effective and critical technique for preventing GC development. In this study, geraniol inhibits H. pylori-induced gastric carcinogen signalling in human gastric epithelial cells (GES-1). Geraniol prevents cytotoxicity, ROS and apoptosis in H. pylori-induced GES-1 cells. Furthermore, geraniol protects against H. -induced antioxidant depletion caused by malondialdehyde, damage of reactive DNA and nuclear fragmentation. Geraniol significantly reduced the expression of phosphorylated mitogen activated protein kinases (MAPKs) proteins such as p38 MAPK, extracellular signal-regulated kinase-1 (ERK1), c-Jun N-terminal kinase (c-JNK), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) in GES-1 infected with H. pylori. Furthermore, geraniol increased the antioxidant protein peroxiredoxin-1 (Prdx-1) in H. pylori-infected cells. Geraniol thus protects H. pylori-concomitant infection, and its resistance may be a possible method in preventing gastric cancer caused by H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Carcinógenos/metabolismo , Carcinógenos/farmacologia , Células Epiteliais , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Neoplasias Gástricas/patologia
11.
Cell Commun Signal ; 21(1): 78, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069625

RESUMO

BACKGROUND: Bovine theileriosis caused by the eukaryotic parasite Theileria annulata is an economically important tick-borne disease. If it is not treated promptly, this lymphoproliferative disease has a significant fatality rate. Buparvaquone (BPQ) is the only chemotherapy-based treatment available right now. However, with the emergence of BPQ resistance on the rise and no backup therapy available, it is critical to identify imperative drugs and new targets against Theileria parasites. METHODS: Artemisinin and its derivatives artesunate (ARS), artemether (ARM), or dihydroartemisinin (DHART) are the primary defence line against malaria parasites. This study has analysed artemisinin and its derivatives for their anti-Theilerial activity and mechanism of action. RESULTS: ARS and DHART showed potent activity against the Theileria-infected cells. BPQ in combination with ARS or DHART showed a synergistic effect. The compounds act specifically on the parasitised cells and have minimal cytotoxicity against the uninfected host cells. Treatment with ARS or DHART induces ROS-mediated oxidative DNA damage leading to cell death. Further blocking intracellular ROS by its scavengers antagonised the anti-parasitic activity of the compounds. Increased ROS production induces oxidative stress and DNA damage causing p53 activation followed by caspase-dependent apoptosis in the Theileria-infected cells. CONCLUSIONS: Our findings give unique insights into the previously unknown molecular pathways underpinning the anti-Theilerial action of artemisinin derivatives, which may aid in formulating new therapies against this deadly parasite. Video abstract.


Assuntos
Artemisininas , Theileria annulata , Animais , Bovinos , Theileria annulata/genética , Caspases , Espécies Reativas de Oxigênio , Artemisininas/farmacologia , Artesunato , Apoptose , Dano ao DNA , Estresse Oxidativo
12.
Mol Cell Biochem ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594629

RESUMO

Looking at the development status of Nigeria and other developing nations, most low-income and rural households often use coal as a source of energy which necessitates its trade very close to the communities. Moreover, the effects of exposure to coal mining activities are rarely explored or yet to be studied, not to mention the numerous street coal vendors in Nigeria. This study investigated the oxidative stress levels in serum and urine through the biomarker 8-OHdG and DNA damage via single cell gel electrophoresis (alkaline comet assay). Blood and urine levels of 8-OHdG from 130 coal vendors and 130 population-based controls were determined by ELISA. Alkaline comet assay was also performed on white blood cells for DNA damage. The average values of 8-OHdG in serum and urine of coal vendors were 22.82 and 16.03 ng/ml respectively, which were significantly greater than those detected in controls (p < 0.001; 15.46 and 10.40 ng/ml of 8-OHdG in serum and urine respectively). The average tail length, % DNA in tail and olive tail moment were 25.06 µm, 18.71% and 4.42 respectively for coal vendors. However, for controls, the average values were 4.72 µm, 3.63% and 1.50 for tail length, % DNA in tail and olive tail moment respectively which were much lower than coal vendors (p < 0.001). Therefore, prolonged exposure to coal dusts could lead to higher serum and urinary 8-OHdG and significant DNA damage in coal vendors observed in tail length, % DNA in tail, and olive tail moment by single cell gel electrophoresis. It is therefore established that coal vendors exhibit a huge risk from oxidative stress and assessment of 8-OHdG with single cell gel electrophoresis has proven to be a feasible tool as biomarkers of DNA damage.

13.
Cancer Treat Res ; 186: 223-237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37978139

RESUMO

The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.


Assuntos
Enzimas Reparadoras do DNA , Neoplasias , Humanos , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , DNA/genética , DNA/uso terapêutico , Dano ao DNA
14.
Mikrochim Acta ; 190(12): 468, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968435

RESUMO

Human 8-oxoguanine DNA glycosylase (hOGG1) is an essential enzyme that recognizes and removes 8-oxoguanine (8-oxoG), a common DNA oxidative damage caused by reactive oxygen species, to maintain genomic integrity of living organisms. Abnormal expression of hOGG1 has been proved to be associated with different diseases such as cancer and neurogenerative disorders, making it a potential biomarker and therapeutic target. In this study, we report the development of  a novel strategy for detecting hOGG1 activity based on CRISPR/Cas12a trans-cleavage triggered by cleavage ligation of a dumbbell DNA probe (DBP) designed with a 3' overhang and an 8-oxoG modification. When hOGG1 is present, it cleaves the DBP at the 8-oxoG site, forming a 5' phosphate termini and exposing a single-strand region allowing complementary to the 3' overhang. After hybridization, the 3' and 5' termini in the juxtaposition are ligated by T4 DNA ligase, leading to a closed DBP for CRISPR/Cas12a-crRNA to recognize and initiate the trans-cleavage of the surrounding ssDNAs with fluorophore and quencher. The method achieves a limit of detection (LOD) with 370 µU/mL and high selectivity. Furthermore, it demonstrates a good compatibility for detecting hOGG1 activity in cell lysates, suggesting a good performance for further application in disease diagnosis and scientific research.


Assuntos
Sistemas CRISPR-Cas , DNA Glicosilases , Humanos , DNA/genética , DNA/metabolismo , Guanina
15.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628896

RESUMO

After cellular differentiation, nuclear DNA is no longer replicated, and many of the associated proteins are downregulated accordingly. These include the structure-specific endonucleases Fen1 and DNA2, which are implicated in repairing mitochondrial DNA (mtDNA). Two more such endonucleases, named MGME1 and ExoG, have been discovered in mitochondria. This category of nuclease is required for so-called "long-patch" (multinucleotide) base excision DNA repair (BER), which is necessary to process certain oxidative lesions, prompting the question of how differentiation affects the availability and use of these enzymes in mitochondria. In this study, we demonstrate that Fen1 and DNA2 are indeed strongly downregulated after differentiation of neuronal precursors (Cath.a-differentiated cells) or mouse myotubes, while the expression levels of MGME1 and ExoG showed minimal changes. The total flap excision activity in mitochondrial extracts of these cells was moderately decreased upon differentiation, with MGME1 as the predominant flap endonuclease and ExoG playing a lesser role. Unexpectedly, both differentiated cell types appeared to accumulate less oxidative or alkylation damage in mtDNA than did their proliferating progenitors. Finally, the overall rate of mtDNA repair was not significantly different between proliferating and differentiated cells. Taken together, these results indicate that neuronal cells maintain mtDNA repair upon differentiation, evidently relying on mitochondria-specific enzymes for long-patch BER.


Assuntos
DNA Mitocondrial , Endonucleases Flap , Animais , Camundongos , Endonucleases Flap/genética , Diferenciação Celular , DNA Mitocondrial/genética , Fibras Musculares Esqueléticas , Reparo do DNA , Endonucleases
16.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069223

RESUMO

Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.


Assuntos
Reparo do DNA , Replicação do DNA , Humanos , Dano ao DNA , Endonucleases/metabolismo , Instabilidade Genômica , DNA , Nucleotídeos
17.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834296

RESUMO

Hepatitis B virus (HBV) remains a dominant cause of hepatocellular carcinoma (HCC). Recently, it was shown that HBV and woodchuck hepatitis virus (WHV) integrate into the hepatocyte genome minutes after invasion. Retrotransposons and transposable sequences were frequent sites of the initial insertions, suggesting a mechanism for spontaneous HBV DNA dispersal throughout the hepatocyte genome. Several somatic genes were also identified as early insertional targets in infected hepatocytes and woodchuck livers. Head-to-tail joints (HTJs) dominated amongst fusions, indicating their creation by non-homologous end-joining (NHEJ). Their formation coincided with the robust oxidative damage of hepatocyte DNA. This was associated with the activation of poly(ADP-ribose) polymerase 1 (PARP1)-mediated dsDNA repair, as reflected by the augmented transcription of PARP1 and XRCC1; the PARP1 binding partner OGG1, a responder to oxidative DNA damage; and increased activity of NAD+, a marker of PARP1 activation, and HO1, an indicator of cell oxidative stress. The engagement of the PARP1-mediated NHEJ repair pathway explains the HTJ format of the initial merges. The findings show that HBV and WHV are immediate inducers of oxidative DNA damage and hijack dsDNA repair to integrate into the hepatocyte genome, and through this mechanism, they may initiate pro-oncogenic processes. Tracking initial integrations may uncover early markers of HCC and help to explain HBV-associated oncogenesis.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hepatócitos , Transformação Celular Neoplásica , Carcinogênese/genética , Genômica , DNA Viral/genética , Hepatite B/complicações , Hepatite B/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
18.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298802

RESUMO

An important biomarker of oxidative damage in cellular DNA is the formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG). Although several methods are available for the biochemical analysis of this molecule, its determination at the single cell level may provide significant advantages when investigating the influence of cell heterogeneity and cell type in the DNA damage response. to. For this purpose, antibodies recognizing 8-oxodG are available; however, detection with the glycoprotein avidin has also been proposed because of a structural similarity between its natural ligand biotin and 8-oxodG. Whether the two procedures are equivalent in terms of reliability and sensitivity is not clear. In this study, we compared the immunofluorescence determination of 8-oxodG in cellular DNA using the monoclonal antibody N45.1 and labeling using avidin conjugated with the fluorochrome Alexa Fluor488 (AF488). Oxidative DNA damage was induced in different cell types by treatment with potassium bromate (KBrO3), a chemical inducer of reactive oxygen species (ROS). By using increasing concentrations of KBrO3, as well as different reaction conditions, our results indicate that the monoclonal antibody N45.1 provides a specificity of 8-oxodG labeling greater than that attained with avidin-AF488. These findings suggest that immunofluorescence techniques are best suited to the in situ analysis of 8-oxodG as a biomarker of oxidative DNA damage.


Assuntos
Avidina , Desoxiguanosina , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Desoxiguanosina/metabolismo , Reprodutibilidade dos Testes , Dano ao DNA , Estresse Oxidativo , Biomarcadores/metabolismo , Anticorpos Monoclonais/metabolismo , DNA/química
19.
Turk J Med Sci ; 53(6): 1648-1657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38813501

RESUMO

Background/aim: Titanium dioxide nanoparticles are widely used in a variety of products, including sunscreens, paints, and ceramics. However, their increasing use has raised concerns about their potential health risks. Titanium dioxide nanoparticles have been shown to have the ability to enter the bloodstream and accumulate in various tissues, reaching the fetus via the placenta. The aim of this study was to investigate the cytotoxic effects of titanium dioxide nanoparticles on a human embryonic lung cell line (HEL 299/An1) and the formation of oxidative DNA damage. Materials and methods: The cytotoxic effects of brookite-based titanium dioxide nanoparticles (<100 nm) were assessed using the 3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay for 24 and 48 h. Cell titanium levels were determined using inductively coupled plasma mass spectrometry. Oxidative DNA damage was assessed by measuring the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) as a biomarker. Results: Titanium dioxide nanoparticles caused dose-dependent cytotoxicity in HEL 299/An1 cells. The IC50 values were 25.93 µM and 0.054 µM after 24 h and 48 h of exposure, respectively. Cell titanium levels were found to be 25,967 ppb after 24 h and 210,353 ppb after 48 h (p < 0.01). 8-OHdG was detected at 32.96 ng/mL after 24 h of exposure and 17.89 ng/mL after 48 h of exposure. Conclusion: In our study, it was shown that titanium nanoparticles caused dose-dependent cytotoxicity and oxidative DNA damage in human embryonic lung cells. The nanoparticles also accumulated in cells and were taken up in higher amounts after 48 h of exposure. These findings suggest that titanium dioxide nanoparticles may pose a health risk, especially for pregnant women who may not be aware of their pregnancy. Therefore, it is important to take preventive measures to reduce exposure to these nanoparticles.


Assuntos
Dano ao DNA , Pulmão , Titânio , Titânio/toxicidade , Humanos , Dano ao DNA/efeitos dos fármacos , Linhagem Celular , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Pulmão/citologia , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/toxicidade , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade
20.
J Hepatol ; 76(4): 910-920, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34902531

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is a leading cause of hepatocellular carcinoma (HCC), but mechanisms linking NASH to eventual tumor formation remain poorly understood. Herein, we investigate the role of TAZ/WWTR1, which is induced in hepatocytes in NASH, in the progression of NASH to HCC. METHODS: The roles of hepatocyte TAZ and its downstream targets were investigated in diet-induced and genetic models of NASH-HCC using gene-targeting, adeno-associated virus 8 (AAV8)-H1-mediated gene silencing, or AAV8-TBG-mediated gene expression. The biochemical signature of the newly elucidated pathway was probed in liver specimens from humans with NASH-HCC. RESULTS: When hepatocyte-TAZ was silenced in mice with pre-tumor NASH using AAV8-H1-shTaz (short-hairpin Taz), subsequent HCC tumor development was suppressed. In this setting, the tumor-suppressing effect of shTaz was not dependent of TAZ silencing in the tumors themselves and could be dissociated from the NASH-suppressing effects of shTaz. The mechanism linking pre-tumor hepatocyte-TAZ to eventual tumor formation involved TAZ-mediated induction of the NOX2-encoding gene Cybb, which led to NADPH-mediated oxidative DNA damage. As evidence, DNA damage and tumor formation could be suppressed by treatment of pre-tumor NASH mice with AAV8-H1-shCybb; AAV8-TBG-OGG1, encoding the oxidative DNA-repair enzyme 8-oxoguanine glycosylase; or AAV8-TBG-NHEJ1, encoding the dsDNA repair enzyme non-homologous end-joining factor 1. In surrounding non-tumor tissue from human NASH-HCC livers, there were strong correlations between TAZ, NOX2, and oxidative DNA damage. CONCLUSIONS: TAZ in pre-tumor NASH-hepatocytes, via induction of Cybb and NOX2-mediated DNA damage, contributes to subsequent HCC tumor development. These findings illustrate how NASH provides a unique window into the early molecular events that can lead to tumor formation and suggest that NASH therapies targeting TAZ might also prevent NASH-HCC. LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is emerging as the leading cause of a type of liver cancer called hepatocellular carcinoma (HCC), but molecular events in pre-tumor NASH hepatocytes leading to HCC remain largely unknown. Our study shows that a protein called TAZ in pre-tumor NASH-hepatocytes promotes damage to the DNA of hepatocytes and thereby contributes to eventual HCC. This study reveals a very early event in HCC that is induced in pre-tumor NASH, and the findings suggest that NASH therapies targeting TAZ might also prevent NASH-HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Neoplasias Hepáticas , NADPH Oxidase 2 , Hepatopatia Gordurosa não Alcoólica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA