Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Environ Manage ; 370: 122718, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369528

RESUMO

This study thoroughly investigates a Membrane BioReactor - Integrated Fixed Film Activated Sludge - Intermittent Aeration (MBR-IFAS-IA) pilot plant operated from a biokinetic point of view. Specifically, respirometric techniques were applied on suspended and attached biomass to evaluate kinetic and stoichiometric parameters. The main aim was to investigate how the simultaneous presence of biofilm and activated sludge could affect the kinetic behaviour and the role of the Sludge Retention Time (SRT) variation in the kinetic behaviour of the system. The results highlighted a mutual interaction between suspended biomass and biofilm in the IFAS-MBR configuration. In Period I both the heterotrophic yield and growth rate of suspended biomass were higher compared to that of biofilm, thus highlighting higher affinity with organic matter; in contrast, the biofilm showed high affinity with nitrification, with increased nitrification rates with decreasing SRT and sustaining nitrification in the activated sludge due to "seeding" effect. Therefore, the suggestion is that it is possible to operate IFAS-MBR systems at low SRT without hampering the nitrification ability due to the growth of nitrifiers in the biofilm. Respirometry has been confirmed to be an effective tool for evaluating biomass kinetic and stoichiometric parameters. The results of this study highlighted the effect of IFAS configuration and can help apply mathematical models in the design phase and monitor biomass viability during plant operations.

2.
Environ Res ; 238(Pt 1): 117142, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739155

RESUMO

In wastewater treatment plants (WWTPs), aeration is vital for microbial oxygen needs. To achieve carbon neutrality, optimizing aeration for energy and emissions reduction is imperative. Machine learning (ML) is used in wastewater treatment to reveal complex rules in large data sets has become a trend. In this vein, the present paper proposes an aeration optimization approach based on the extreme gradient boosting-bidirectional long short-term memory (XGB-Bi-LSTM) model via the online monitoring of oxygen transfer efficiency (OTE) and oxygen uptake rate (OUR), thus allowing WWTPs to conserve energy and reduce indirect carbon emissions. The approach uses gain algorithm of XGB to calculate the importance of features and identify important parameters, and then uses Bi-LSTM to predict the target with important parameters as features. Operational data from a WWTP in Suzhou, China, is employed to train and test the approach, the performance of which is compared with ML models suitable for regression prediction tasks (XGB, random forest, light gradient boosting machine, gradient boosting and LSTM). Experimental results show the approach requires only a small number of input parameters to achieve good performance and outperforms other machine-learning models. When OTE and dissolved oxygen (DO) are used as features to predict the alpha factor (αF; since diffusers were used, multiply by the pollution factor F), the R-squared (R2) is 0.9977, the root mean square error (RMSE) is 0.0043, the mean absolute percentage error (MAPE) is 0.0069 and the median absolute error (MedAE) is 0.0032. When the predicted αF and the OUR are used as features to predict the air flow rate of an aeration unit, the R2 is 0.9901, the RMSE is 3.6150, the MAPE is 0.0209 and the MedAE is 1.5472. Using our optimized aeration approach, the energy consumption can be reduced by 23%.


Assuntos
Oxigênio , Purificação da Água , Oxigênio/análise , Águas Residuárias , Purificação da Água/métodos , Algoritmos , Carbono
3.
Artigo em Inglês | MEDLINE | ID: mdl-36751723

RESUMO

Antimony (Sb) is a toxic and carcinogenic metalloid that can be present in contaminated water generated by mining operations and other industrial activities. The toxicity of Sb (III) and Sb (V) to aerobic microorganisms remains limited and unexplored for anaerobic microorganisms involved in hydrogen (H2) and methane (CH4) production. This study aimed to evaluate the toxicity of Sb (III) and Sb (V) upon aerobic and anaerobic microorganisms important in biological wastewater treatment systems. Sb (III) was more toxic than Sb (V) independently of the test and environment evaluated. Under aerobic conditions maintained in the Microtox assay, Sb (V) was not toxic to Allivibrio fischeri at concentrations as high as 500 mg/L, whereas Sb (III) caused just over 50% inhibition at concentration of 250 mg/L after 5 min of exposure. In the respirometry test, for the specific oxygen uptake rate, the concentrations of Sb (III) and Sb (V) displaying 50% inhibition were 0.09 and 56.2 mg/L, respectively. Under anaerobic conditions, exposure to Sb (III) and Sb (V) led to a decrease in microorganisms activity of fermentative and methanogenic processes. The results confirm that the microbial toxicity of Sb depends on its speciation and Sb (III) displays a significantly higher inhibitory potential than Sb (V) in both aerobic and anaerobic environments.


Assuntos
Antimônio , Antimônio/toxicidade , Anaerobiose
4.
Biotechnol Bioeng ; 119(4): 1077-1090, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35005786

RESUMO

The ever-increasing demand for biopharmaceuticals has created the need for improving the overall productivity of culture processes. One such operational concept that is considered is fed-batch operations as opposed to batch operations. However, optimal fed-batch operations require complete knowledge of the cell culture to optimize the culture conditions and the nutrients feeding. For example, when using high-throughput small-scale bioreactors to test multiple clones that do not behave the same, depletion or overfeeding of some key components can occur if the feeding strategy is not individually optimized. Over the recent years, various solutions for real-time measuring of the main cell culture metabolites have been proposed. Still, the complexity in the implementation of these techniques has limited their use. Soft-sensors present an opportunity to overcome these limitations by indirectly estimating these variables in real-time. This manuscript details the development of a new soft-sensor-based fed-batch strategy to maintain substrate concentration (glucose and glutamine) at optimal levels in small-scale multiparallel Chinese Hamster Ovary Cells cultures. Two alternatives to the standard feeding strategy were tested: an OUR soft-sensor-based strategy for glucose and glutamine (Strategy 1) and a dual OUR for glutamine and CO2 /alkali addition for glucose soft-sensor strategy (Strategy 2). The results demonstrated the applicability of the OUR soft-sensor-based strategy to optimize glucose and glutamine feedings, which yielded a 21% increase in final viable cell density (VCD) and a 31% in erythropoietin titer compared with the reference one. However, CO2 /alkali addition soft-sensor suffered from insufficient data to relate alkali addition with glucose consumption. As a result, the culture was overfed with glucose resulting in a 4% increase on final VCD, but a 9% decrease in final titer compared with the Reference Strategy.


Assuntos
Dióxido de Carbono , Glutamina , Álcalis , Animais , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Células CHO , Técnicas de Cultura de Células/métodos , Cricetinae , Cricetulus , Glucose/metabolismo , Glutamina/metabolismo
5.
J Environ Sci (China) ; 121: 112-121, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35654502

RESUMO

Respirogram technology has been widely applied for aerobic process, however, the response of respirogram to anoxic denitrification is still unclear. To reveal such response may help to design a new method for the evaluation of the performance of denitrification. The size distribution of flocs measured at different denitrification moments demonstrated a clear expansion of flocs triggered by denitrification, during which higher specific endogenous and quasi-endogenous respiration rates (SOURe and SOURq) were also observed. Furthermore, SOURq increases exponentially with the specific denitrification rate (SDNR), suggesting that there should be a maximum SDNR in conventional activated sludge systems. Based on these findings, an index Rq/t, defined as the ratio of quasi-endogenous (OURq) to maximum respiration rate (OURt), is proposed to estimate the denitrification capacity that higher Rq/t indicates higher denitrification potential, which can be readily obtained without complex measurement or analysis, and it offers a novel and promising respirogram-based approach for denitrification estimation and control by taking measures to extend anoxic time to maintain its value at a high level within a certain range.


Assuntos
Desnitrificação , Esgotos , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
6.
Biodegradation ; 32(3): 313-326, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811584

RESUMO

The rapid growth of the use of nanomaterials in different modern industrial branches makes the study of the impact of nanoparticles on the human health and environment an urgent matter. For instance, it has been reported that titanium dioxide nanoparticles (TiO2 NPs) can be found in wastewater treatment plants. Previous studies have found contrasting effects of these nanoparticles over the activated sludge process, including negative effects on the oxygen uptake. The non-utilization of oxygen reflects that aerobic bacteria were inhibited or decayed. The aim of this work was to study how TiO2 NPs affect the bacterial diversity and metabolic processes on an activated sludge. First, respirometry assays of 8 h were carried out at different concentrations of TiO2 NPs (0.5-2.0 mg/mL) to measure the oxygen uptake by the activated sludge. The bacterial diversity of these assays was determined by sequencing the amplified V3-V4 region of the 16S rRNA gene using Illumina MiSeq. According to the respirometry assays, the aerobic processes were inhibited in a range from 18.5 ± 4.8% to 37.5 ± 2.0% for concentrations of 0.5-2.0 mg/mL TiO2 NPs. The oxygen uptake rate was affected mainly after 4.5 h for concentrations higher than 1.0 mg/mL of these nanoparticles. Results indicated that, in the presence of TiO2 NPs, the bacterial community of activated sludge was altered mainly in the genera related to nitrogen removal (nitrogen assimilation, nitrification and denitrification). The metabolic pathways prediction suggested that genes related to biofilm formation were more sensitive than genes directly related to nitrification-denitrification and N-assimilation processes. These results indicated that TiO2 NPs might modify the bacteria diversity in the activated sludge according to their concentration and time of exposition, which in turn impact in the performance of the wastewater treatment processes.


Assuntos
Nanopartículas , Esgotos , Bactérias/genética , Biodegradação Ambiental , Humanos , RNA Ribossômico 16S/genética , Titânio
7.
J Environ Manage ; 277: 111467, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091785

RESUMO

In response to the ever-increasing need for monitoring-based process control of wastewater treatment plants, an online applicable respirometer shows great promise for real-time measurement of oxygen uptake rate (OUR) and biochemical oxygen demand (BOD) measurements as a surrogate of the biodegradability of wastewater. Here, we have developed a photosensor-assisted real-time respirometric system equipped with bubble counting sensors for accurate measurement of microbial oxygen consumption in a bottle. This system can measure OUR and BOD in a bottle equipped with a tube containing NaOH solution to absorb carbon dioxide and supplied with continuous atmospheric oxygen to the bottle, which reliably supplies non-limiting dissolved oxygen (DO) for aerobic biodegradation even at high organic loads. These technical improvements allow a sensitive and rapid analytical tool offering real-time profiles of oxygen uptake rate as well as BOD measurements with an extended measurable range (0-420 mg O2/L), enabling significant reduction or elimination of dilution steps. The respirometric system was used to elucidate the biodegradable kinetics of domestic and swine wastewaters as a function of the type and concentration of organic matters, depending on source characteristics including rapidly or slowly oxidizable organic substances by bacteria. Compared with conventional and manometric BOD methods, our method is reliable and accurate.


Assuntos
Biocombustíveis , Monitoramento Biológico , Animais , Biodegradação Ambiental , Oxigênio/análise , Suínos , Águas Residuárias
8.
Entropy (Basel) ; 23(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34441197

RESUMO

This study presents a mathematical model of recombinant protein expression, including its development, selection, and fitting results based on seventy fed-batch cultivation experiments from two independent biopharmaceutical sites. To resolve the overfitting feature of the Akaike information criterion, we proposed an entropic extension, which behaves asymptotically like the classical criteria. Estimation of recombinant protein concentration was performed with pseudo-global optimization processes while processing offline recombinant protein concentration samples. We show that functional models including the average age of the cells and the specific growth at induction or the start of product biosynthesis are the best descriptors for datasets. We also proposed introducing a tuning coefficient that would force the modified Akaike information criterion to avoid overfitting when the designer requires fewer model parameters. We expect that a lower number of coefficients would allow the efficient maximization of target microbial products in the upstream section of contract development and manufacturing organization services in the future. Experimental model fitting was accomplished simultaneously for 46 experiments at the first site and 24 fed-batch experiments at the second site. Both locations contained 196 and 131 protein samples, thus giving a total of 327 target product concentration samples derived from the bioreactor medium.

9.
Anal Bioanal Chem ; 412(9): 2111-2121, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31802179

RESUMO

In a biotechnological process, standard monitored process variables are pH, partial oxygen pressure (pO2), and temperature. These process variables are important, but they do not give any information about the metabolic activity of the cell. The ISICOM is an in situ combi-sensor that is measuring the cell-specific oxygen uptake rate (qOUR) online. This variable allows a qualitative judgement of metabolic cell activity. The measuring principle of the ISICOM is based on a volume element enclosed into a small measuring chamber. Inside the measuring chamber, the pO2 and the scattered light is measured. Within a defined measuring interval, the chamber closes, and the oxygen supply for the cells is interrupted. The decreasing oxygen concentration is recorded by the pO2 optode. This measuring principle, known as the dynamic method, determines the oxygen uptake rate (OUR). Together with the scattered light signal, the cell concentration is estimated and the qOUR is available online. The design of the ISICOM is focused on functionality, sterility, long-term stability, and response time behavior so the sensor can be used in bioprocesses. With the ISICOM, measurement of online and in situ measurement of the OUR is possible. The OUR and qOUR online measurement of an animal cell batch cultivation is demonstrated, with maximum values of OUR = 2.5 mmol L-1 h-1 and a qOUR = 9.5 pmol cell-1 day-1. Information about limitation of the primary and secondary substrate is derived by the monitoring of the metabolic cell activity of bacteria and yeast cultivation processes. This sensor contributes to a higher process understanding by offering an online view on to the cell behavior. In the sense of process analytical technology (PAT), this important information is needed for bioprocesses to realize a knowledge base process control.


Assuntos
Técnicas Biossensoriais/instrumentação , Oxigênio/metabolismo , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Células CHO , Cricetulus , Desenho de Equipamento , Escherichia coli/metabolismo , Oxigênio/análise , Saccharomycetales/metabolismo
10.
J Environ Manage ; 275: 111198, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836168

RESUMO

The disposal of landfill leachate is a chronic problem facing the municipal solid waste industry. The composition of landfill leachate is highly variable and often dependent on site-specific conditions. Due to the potentially disruptive impact on wastewater treatment processes, wastewater treatment plants (WWTP) are reluctant to accept landfill leachate for co-treatment. To improve the ability of WWTPs to screen the impact of landfill leachate and reduce landfill owners' cost of disposal, two bench scale methods were evaluated. First, six landfill leachates were screened with the specific oxygen uptake rate (SOUR) test, and second, the effect of leachate on the efficacy of activated sludge processes using lab scale sequencing batch reactors (SBRs) was determined with volumetric loading rates ranging from 5% to 20%. Results suggested that these tools can be used to estimate the impacts of leachate loading on biological processes. Both tools were able to identify loadings where biological activity was increased and inhibition of biological processes was minimized. The loading that maximized microbial activity was leachate specific and typically ranged from 5% to 10%. Taken together, these results suggest that improved landfill leachate screening and testing may improve outcomes at WWTPs by identifying a "Goldilocks" loading rate that increases biological activity. Nevertheless, our results also demonstrated that the effluent quality was degraded even at loading rates that increased biological activity. It is uncertain at this time if biological acclimation can remedy increased effluent nutrient mass loadings, suggesting further research is needed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Reatores Biológicos , Nitrogênio/análise , Nutrientes , Esgotos , Poluentes Químicos da Água/análise
11.
Appl Microbiol Biotechnol ; 103(17): 6903-6917, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31309268

RESUMO

The increasing demand for biopharmaceuticals produced in mammalian cells has driven the industry to enhance the productivity of bioprocesses through intensification of culture process. Fed-batch and perfusion culturing strategies are considered the most attractive choices, but the application of these processes requires the availability of reliable online measuring systems for the estimation of cell density and metabolic activity. This manuscript reviews the methods (and the devices used) for monitoring of the oxygen consumption, also known as oxygen uptake rate (OUR), since it is a straightforward parameter to estimate viable cell density and the physiological state of cells. Furthermore, as oxygen plays an important role in the cell metabolism, OUR has also been very useful to estimate nutrient consumption, especially the carbon (glucose and glutamine) and nitrogen (glutamine) sources. Three different methods for the measurement of OUR have been developed up to date, being the dynamic method the golden standard, even though DO and pH perturbations generated in the culture during each measurement. For this, many efforts have been focused in developing non-invasive methods, such as global mass balance or stationary liquid mass balance. The low oxygen consumption rates by the cells and the high accuracy required for oxygen concentration measurement in the gas streams (inlet and outlet) have limited the applicability of the global mass balance methodology in mammalian cell cultures. In contrast, stationary liquid mass balance has successfully been implemented showing very similar OUR profiles compared with those obtained with the dynamic method. The huge amount of studies published in the last years evidence that OUR have become a reliable alternative for the monitoring and control of high cell density culturing strategies with very high productivities.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Sistemas On-Line , Consumo de Oxigênio , Oxigênio/análise , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Contagem de Células , Meios de Cultura/química , Nutrientes/análise , Nutrientes/metabolismo , Oxigênio/metabolismo
12.
J Environ Sci (China) ; 79: 330-338, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784456

RESUMO

Respirograms of activated sludge OURTx and OUR20x were measured under site (T) and standard (20°C) temperatures, respectively, and the predicted standard temperature respirogram OUR20x,cal was also calculated using the Arrhenius equation. These respirogram profiles reveal more information than effluent quality. A decrease of OUR20x is a critical alarm signal for the loss of pollutant removal capacity, and a sudden increase of the predicted value OUR20x,cal is an alarm signal for the unrecoverable deterioration of biomass. The sign of OUR20x-OUR20x,cal can be used for selection of tuning strategies. For example, a negative value of OUR20x-OUR20x,cal indicates that doubling biomass is difficult, thus strategies such as extending the reaction time with limited available biomass is preferred. The findings in this study elucidated the respiration profile of activated sludge under changes of temperature and can be effectively used for the stable operation of Wastewater Treatment Plants under cold temperatures and seasonal variations.


Assuntos
Oxigênio/metabolismo , Esgotos , Reatores Biológicos , Estações do Ano , Temperatura , Eliminação de Resíduos Líquidos
13.
Artigo em Inglês | MEDLINE | ID: mdl-29111848

RESUMO

In this study, the effect of total dissolved solids (TDS) on the performance of a sequencing batch reactor (SBR) system to treat synthetic wastewater with microbial inoculum was evaluated. The SBR was operated continuously for eight days on a 6-h cycle with anaerobic/anoxic/aerobic phases in each cycle after entering the steady state, and the influent TDS was tested at five levels, i.e., 750, 1500, 3000, 4500, and 6000 mg L-1. The results showed that only two TDS levels (750 and 1500 mg L-1) could achieve good COD removal efficiencies (94.8 and 92.2%, respectively). For TDS levels equal to, or greater than, 3000 mg L-1, a 20% reduction in COD removal efficiency resulted. Different from COD, removal of NH4+-N appeared not to be affected by the TDS content, and a removal efficiency of higher than 97% was obtained, regardless of the TDS content. However, only the lowest two TDS levels achieved high phosphate removals (>99%), and the removal efficiency dropped to 57.8 and 45.9%, respectively, for TDS levels of 3000 and 4500 mg L-1. More interestingly, a phosphate release, instead of uptake, was observed at the TDS level of 6000 mg L-1. It may be concluded that for effective phosphate removal, the TDS level in the liquid should be controlled under 1500 mg L-1, and higher liquid TDS levels were detrimental to the aerobes and could disrupt the aerobic metabolism, leading to the failure of the SBR treatment system. A tendency that raising TDS content would adversely affect the aerobic oxygen uptake rate was observed, which could also result in SBR upset. A power regression with an R of 0.9844 was established between the influent TDS concentration and the TDS removal efficiency, which may be used to estimate the SBR performance in TDS removal based on the influent TDS content.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Biodegradação Ambiental , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
14.
Bioprocess Biosyst Eng ; 40(6): 877-890, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28289882

RESUMO

To interpret the biological nutrient removal in a cyclic activated sludge system (CAS), a modified model was developed by combining the process of simultaneous storage and growth, and the kinetics of soluble microbial product (S SMP) and extracellular polymeric substance (X EPS) with activated sludge model no. 3 (ASM3). These most sensitive parameters were initially selected whilst parameters with low sensitivity were given values from literature. The selected parameters were then calibrated on an oxygen uptake rate test and a batch CAS reactor on an operational cycle. The calibrated model was validated using a combination of the measurements from a batch CAS reactor operated for 1 month and the average deviation method. The simulations demonstrated that the modified model was capable of predicting higher effluent concentrations compared to outputs of the ASM3 model. Additionally, it was also shown that the average deviation of effluent S COD, S NH, S SMP and X EPS simulated with the modified model was all less than 1 mg L-1. In summary, the model could effectively describe biological processes in a CAS reactor and provide a wonderful tool for operation.


Assuntos
Esgotos , Reatores Biológicos , Cinética , Eliminação de Resíduos Líquidos , Águas Residuárias
15.
J Environ Manage ; 203(Pt 2): 825-830, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681869

RESUMO

In this work, the inhibitory effect of cyanide, phenol and 4-nitrophenol on the activated sludge process was investigated. The inhibition of the aerobic oxidation of organic matter, nitrification and denitrification were examined in batch reactors by measuring the specific oxygen uptake rate (sOUR), the specific ammonium uptake rate (sAUR) and the specific nitrogen uptake rate (sNUR) respectively. The tested cyanide, phenol and 4-nitrophenol concentrations were 0.2-1.7 mg/L, 4.8-73.1 mg/L and 8.2-73.0 mg/L respectively. Cyanide was highly toxic as it significantly (>50%) inhibited the activity of autotrophic biomass, heterotrophic biomass under aerobic conditions and denitrifiers even at relatively low concentrations (1.0-1.7 mgCN-/L). The determination of the half maximum inhibitory concentration (IC50) confirmed this, since for cyanide IC50 values were very low for the examined bioprocesses (<1.5 mg/L). On the other hand, the IC50 values for phenol and 4-nitrophenol were much higher (>25 mg/L) for the tested bioprocesses since appreciable concentrations were required to accomplish significant inhibition. The autotrophic bacteria were more sensitive to phenol than the aerobic heterotrophs. The denitrifiers were found to be very resistant to phenol.


Assuntos
Cianetos , Fenol , Eliminação de Resíduos Líquidos , Águas Residuárias , Reatores Biológicos , Nitrogênio , Nitrofenóis , Petróleo , Fenóis , Esgotos , Purificação da Água
16.
J Environ Sci (China) ; 55: 224-235, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477817

RESUMO

In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q'air) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology.


Assuntos
Oxigênio/análise , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Modelos Teóricos , Nitrificação , Esgotos/análise , Águas Residuárias
17.
Bioprocess Biosyst Eng ; 39(12): 1803-1816, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27488286

RESUMO

A bench-scale integrated process based on submerged aerobic powdered activated carbon-membrane bioreactor (PAC-MBR) has been utilized and established for the treatment of landfill leachate. The results showed that the submerged PAC-MBR system effectively removed biodegradable trace organic compounds by the average removal rate about 71 % at optimum food to microorganism (F/M) ratio of 0.4 gCOD/g day under a HRT of 24 h. Adding nanofiltration (NF) process increased the treatment efficiency up to 99 %. Further, adding powdered activated carbon to activated sludge (AS) resulted in a higher adsorption capacity in comparison with AS. Adsorption isotherms were investigated and fitted by the Langmuir and Freundlich isotherm models in which the Langmuir model performed better. The specific oxygen uptake rate (SOUR) showed that adding PAC reduces the effects of COD on microorganism activities. NH3-N, TKN and Heavy metals removal efficiency amounted to 97 ± 2, 96 ± 2, and 99 ± 2 %, respectively.


Assuntos
Reatores Biológicos , Membranas Artificiais , Modelos Biológicos , Poluentes Químicos da Água/metabolismo , Purificação da Água , Ultrafiltração
18.
J Chem Technol Biotechnol ; 91(3): 823-831, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27478291

RESUMO

BACKGROUND: Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. RESULTS: An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and kLa values of ∼170 h-1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 gdcw L-1. Oxygen uptake rates of ∼34 mmol L-1 h-1 were achieved. CONCLUSION: The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

19.
Asian-Australas J Anim Sci ; 29(5): 753-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26954138

RESUMO

Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25837566

RESUMO

Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.


Assuntos
Resíduos Industriais , Papel , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Chile
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA