Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Biochem Biophys Res Commun ; 691: 149306, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38056247

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Our previous study on IMTs reveals that disrupt NMD pathway causes to lower the threshold for triggering the immune cell infiltration, thereby resulting in inappropriate immune activation. However, myofibroblast differentiation and proliferation is not yet known. METHODS: RT-PCR, RT-qPCR, DNA sequence, western bolt, 5'race analysis and site-specific mutagenesis were used in this study. RESULTS: Here, an alternative spliced (ALS) UPF2 mRNA skipping exon 2 and 3 and corresponding to the truncated UPF2 protein were found in 2 pancreatic IMTs. We showed that the uORF present in the 5'UTR of UPF2 mRNA is responsible for the translation inhibition, whiles ALS UPF2 is more facilitated to be translated into the truncated UPF2 protein. Several mRNA targets of the NMD were upregulated in IMT samples, indicating that the truncated UPF2 function is strongly perturbed, resulted in disrupted NMD pathway in IMTs. These upregulated NMD targets included cdkn1a expression and the generation of high levels of p21 (waf1/cip1), which may contribute to triggering IMTs. CONCLUSION: The disrupt UPFs/NMD pathway may link to molecular alteration associated with differentiation and proliferation for IMTs.


Assuntos
Neoplasias , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Cell Mol Life Sci ; 80(3): 80, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869202

RESUMO

Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Receptor alfa de Estrogênio , Tamoxifeno , Estrogênios , Linhagem Celular
3.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500594

RESUMO

Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient's survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study's aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Flavonoides/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B1 , Inibidor de Quinase Dependente de Ciclina p21/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
Medicina (Kaunas) ; 57(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066975

RESUMO

Background andObjective: Epigenetic modifications are believed to play a significant role in the development of cancer progression, growth, differentiation, and cell death. One of the most popular histone deacetylases inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, can directly activate p21WAF1/CIP1 gene transcription through hyperacetylation of histones by a p53 independent mechanism. In the present investigation, we evaluated the correlation between histone modifications and DNA methyltransferase enzyme levels following SAHA treatments in A2780 ovarian cancer cells. Materials and Methods: Acetylation of histones and methyltransferases levels were analyzed using RT2 profiler PCR array, immunoblotting, and immunofluorescence methods in 2D and 3D cell culture systems. Results: The inhibition of histone deacetylases (HDAC) activities by SAHA can reduce DNA methyl transferases / histone methyl transferases (DNMTs/HMTs) levels through induction of hyperacetylation of histones. Immunofluorescence analysis of cells growing in monolayers and spheroids revealed significant up-regulation of histone acetylation preceding the above-described changes. Conclusions: Our results depict an interesting interplay between histone hyperacetylation and a decrease in methyltransferase levels in ovarian cancer cells, which may have a positive impact on the overall outcomes of cancer treatment.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Ovarianas , Acetilação , Linhagem Celular Tumoral , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Humanos , Metiltransferases , Neoplasias Ovarianas/tratamento farmacológico
5.
Biochem Cell Biol ; 98(2): 191-202, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32167787

RESUMO

Apolipoprotein E2 (ApoE2) is reportedly critical for cell proliferation and survival, and has been identified as a potential tumour-associated marker in many kinds of cancer. However, studies of the function and mechanisms of ApoE2 in pancreatic cancer proliferation and development are rare. In this study, we performed an analysis to determine the modulatory effects of ApoE2-LRP8 (lipoprotein receptor-related protein 8) pathway on cell cycle and cell proliferation, and explored its mechanisms in pancreatic cancer. High expression levels of ApoE2-LRP8/c-Myc were detected in tumour tissues and cell lines by immunohistochemistry and Western blotting. It was also shown that ApoE2-LRP8 induced phosphorylation of ERK1/2 to activate c-Myc and contribute to cell-cycle-related protein expression. ApoE2 conditions induced c-Myc binding to target gene sequences in the p21Waf1 promoter, resulting in decreased transcription. ERK/c-Myc contributes to the promotion of the expression levels of cyclin D1, cdc2, and cyclin B1, and reduces p21Waf1 activity, thereby promoting cell cycle distribution. We demonstrated the function of ApoE2-LRP8 in the activation of the ERK-c-Myc-p21Waf1 signalling cascade and the modulation of G1/S and G2/M transition, indicating ApoE2-LRP8's important role in the cancer cell proliferation. ApoE2 could serve as a diagnostic marker and chemotherapeutic target in pancreatic cancer.


Assuntos
Apolipoproteína E2/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transporte Ativo do Núcleo Celular , Biomarcadores Tumorais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
6.
Biochem Biophys Res Commun ; 524(3): 736-743, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32035614

RESUMO

Deferasirox (DFX) is an iron chelator approved for the treatment of iron overload diseases. However, the role of DFX in oxidative stress-induced cell apoptosis and the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this study, we found that DFX rendered resistant to H2O2-induced apoptosis in HEK293T cells, reduced the intracellular levels of the labile iron pool (LIP) and oxidative stress induced by H2O2. Furthermore, DFX inhibited the ubiquitination and degradation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) via modulation of the interaction of p21 with SCF-Skp2. DFX also showed the inhibition effect on the activation of c-Jun N-terminal kinase (JNK), pro-caspase-3 and related mitochondrial apoptosis pathway induced by H2O2. These results provide novel insights into the molecular mechanism underpinning iron-mediated oxidative stress and apoptosis, and they may represent a promising target for therapeutic interventions in related pathological conditions.


Assuntos
Apoptose/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citoproteção/efeitos dos fármacos , Deferasirox/farmacologia , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Caspase 3/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio , Ferro/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707717

RESUMO

The poor outcome of pancreas ductal adenocarcinomas (PDAC) is frequently linked to therapy resistance. Modulated electro-hyperthermia (mEHT) generated by 13.56 MHz capacitive radiofrequency can induce direct tumor damage and promote chemo- and radiotherapy. Here, we tested the effect of mEHT either alone or in combination with radiotherapy using an in vivo model of Panc1, a KRAS and TP53 mutant, radioresistant PDAC cell line. A single mEHT shot of 60 min induced ~50% loss of viable cells and morphological signs of apoptosis including chromatin condensation, nuclear shrinkage and apoptotic bodies. Most mEHT treatment related effects exceeded those of radiotherapy, and these were further amplified after combining the two modalities. Treatment related apoptosis was confirmed by a significantly elevated number of annexin V single-positive and cleaved/activated caspase-3 positive tumor cells, as well as sub-G1-phase tumor cell fractions. mEHT and mEHT+radioterapy caused the moderate accumulation of γH2AX positive nuclear foci, indicating DNA double-strand breaks and upregulation of the cyclin dependent kinase inhibitor p21waf1 besides the downregulation of Akt signaling. A clonogenic assay revealed that both mono- and combined treatments affected the tumor progenitor/stem cell populations too. In conclusion, mEHT treatment can contribute to tumor growth inhibition and apoptosis induction and resolve radioresistance of Panc1 PDAC cells.


Assuntos
Carcinoma Ductal Pancreático/terapia , Hipertermia Induzida/métodos , Neoplasias Pancreáticas/terapia , Apoptose , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Terapia Combinada , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Humanos , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação , Terapia por Radiofrequência
8.
J Cell Biochem ; 120(1): 809-820, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145810

RESUMO

Curcumin, the active component of the spice turmeric, induce global DNA hypomethylation as it has been shown to inhibit DNA methyltransferases. It promotes cell death in cancer cells by arresting in the G1 phase. It was explained to cause increased expression of cell cycle regulator, p21 (WAF1/Cip1); however, the mechanism remains not clear. The p21 promoter harvests a CpG island (CGI) in the proximal region enriched with CG dinucleotide clusters with Kruppel-like factor 4 (KLF4) transcription factor binding site. We probed the p21 promoter CGI (spanning from -135 to +12, respective to the transcription start site) to detect alterations in cytosine methylation level in response to curcumin exposure in four different human cancer cell lines: A431, A549, MCF7, and HeLa. We observed curcumin (20 µM) treatment significantly increased the expression of p21, and the promoter CGI was demethylated in a dose-dependent manner. The curcumin significantly raised the level KLF4 and enhanced the p21 promoter occupancy by KLF4. From our results we hypothesize that curcumin-mediated demethylation of the p21 proximal promoter and increased KLF4 expression as well as its binding to its proximal promoter could serve as a mechanism that could be hypothesized to cause upregulation of p21 in presence of curcumin and thus its therapeutic implications could further be investigated.


Assuntos
Ilhas de CpG/efeitos dos fármacos , Curcumina/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Metilação de DNA/efeitos dos fármacos , Desmetilação/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/metabolismo , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Células A549 , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Curcuma/química , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Células HeLa , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
9.
Biochem Biophys Res Commun ; 517(2): 238-243, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31345573

RESUMO

Inhibition of gamma-glutamylcyclotransferase (GGCT), which is highly expressed in various cancer tissues, exerts anticancer effects both in vitro and in vivo. Previous studies have shown that depletion of GGCT blocks the growth of MCF7 breast cancer cells via upregulation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21); in addition, induction of autophagy plays a role in the upregulation of p21 upon GGCT knockdown. However, the mechanisms underlying induction of p21 in cancer cells are not fully understood. Here, we show that GGCT knockdown in PC3 human prostate cancer and A172 glioblastoma cells upregulates the mRNA and nuclear protein levels of Forkhead box O transcription factor 3a (FOXO3a), a transcriptional factor involved in tumor suppression. Simultaneous knockdown of FOXO3a and GGCT in PC3 and A172 cells attenuated upregulation of p21, followed by growth inhibition and cell death. Furthermore, simultaneous knockdown of GGCT and AMP-activated protein kinase (AMPK) α, a metabolic stress sensor, in PC3 and A172 cells led to marked attenuation of cellular responses induced by GGCT knockdown, including an increase in FOXO3a phosphorylation at Ser413, upregulation of p21, growth inhibition, and cell death. These results indicate that the AMPK-FOXO3a-p21 axis plays an important role in inhibition of cancer cell growth by depletion of GGCT.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Transdução de Sinais , gama-Glutamilciclotransferase/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Proteína Forkhead Box O3/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , gama-Glutamilciclotransferase/metabolismo , Quinases Ativadas por p21/metabolismo
10.
Mol Cell Biochem ; 450(1-2): 53-64, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29922945

RESUMO

S100A11 as a S100 protein family member has been documented to play dual-direction regulation over cancer cell proliferation. We explored the role of S100A11 in the proliferation and apoptosis of pancreatic cancer cell line PANC-1 and the potential mechanisms involving the TGF-ß1/SMAD4/p21 pathway. S100A11 and TGF-ß1 protein expressions in 30 paraffin-embedded specimens were evaluated by immunohistochemistry. S100A11 and TGF-ß1 expression in PANC-1 cell line was suppressed using small interfering RNA (siRNA), respectively. Subsequently, pancreatic cancer cell apoptosis was measured by Cell Counting Kit-8 and flow cytometry, and S100A11 and TGF-ß1/SMAD4/p21 pathway proteins and genes were detected with Western blotting and quantitative polymerase chain reaction (qPCR). S100A11 cytoplasmic/nuclear protein translocation was examined using NE-PER® cytoplasm/nuclear protein extraction in cells interfered with TGF-ß1 siRNA. Our results showed that S100A11 expression was positively correlated with TGF-ß1 expression in pancreatic cancerous tissue. Silencing TGF-ß1 down-regulated intracellular P21WAF1 expression by 90%, blocked S100A11 from cytoplasm entering nucleus, and enhanced cell proliferation. Silencing S100A11 down-regulated intracellular P21 expression and promoted cell apoptosis without significantly changing TGF-ß1 and SMAD4 expression. Our findings revealed that S100A11 and TGF-ß1/SMAD4 signaling pathway were related but mutually independent in regulating PANC-1 cells proliferation and apoptosis. Other independent mechanisms might be involved in S100A11's regulation of pancreatic cell growth. S100A11 could be a potential gene therapy target for pancreatic cancer.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas S100/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21 , Feminino , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas S100/genética , Proteína Smad4/genética , Fator de Crescimento Transformador beta1/genética
11.
Andrologia ; 51(10): e13413, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31523838

RESUMO

As a highly evolutionarily conserved signaling pathway, Notch widely participates in cell-fate decisions and the development of various tissues and organs. In male reproduction, research on the Notch signaling pathway has mainly concentrated on germ cells and Sertoli cells. Leydig cells are the primary producers of testosterone and play important roles in spermatogenesis and maintaining secondary sexual characteristics. In this study, we used TM3 cells, a murine adult Leydig cell line, to investigate the expression profiles of Notch receptors and ligands and observe the effect of Notch signaling on the proliferation of TM3 cells. We found that Notch 1-3 and the ligands Dll-1 and Dll-4 were expressed in TM3 cells, Notch 1-3 and the ligand Dll-1 were expressed in testis interstitial Leydig cells, and Notch signaling inhibition suppressed the proliferation of TM3 cells and induced G0/G1 arrest. Inhibition of Notch signaling increased the expression of p21Waf1/Cip1 and p27. Overall, our results suggest that Notch inhibition suppresses the proliferation of TM3 cells and P21Waf1/Cip1 , and p27 may contribute to this process.


Assuntos
Derivados de Benzeno/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Propionatos/farmacologia , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Intersticiais do Testículo/fisiologia , Masculino , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia
12.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646538

RESUMO

The hYSK1, a serine/threonine kinase (STK)-25, has been implicated in a variety of cellular functions including cell migration and polarity. We have recently reported that hYSK1 down-regulated the expression and functions of p16INK4a, a cell cycle regulatory protein, thereby enhancing migration and growth of cancer cells under hypoxic conditions. In this study, we further investigated the mechanisms underlying downregulation of p16INK4a and anti-migratory function of hYSK1. Our study revealed that p21WAF1/Cip1 is a novel binding partner of hYSK1. Moreover, the interaction between hYSK1 and p21WAF1/Cip1 led to the inhibition of SP-1 transcriptional activity, as revealed by a significant down-regulation of SP-1-mediated transactivation of p16INK4a promoter, and accelerated MMP-2 expression. Conversely, the knock-down of hYSK1 enhanced the p16INK4a promoter activity and protein expression, and diminished MMP-2 transcription and protein levels in hypoxic conditions as compared to control. Taken together, hYSK1 blocks the p21WAF1/Cip1 functions by direct interaction and inhibits the p16INK4a expression and induces MMP-2 expression by its regulations of SP-1 transcriptional activity under the hypoxia conditions.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Hipóxia Celular/genética , Linhagem Celular , Movimento Celular/genética , Polaridade Celular/genética , Regulação da Expressão Gênica , Humanos , Metaloproteinase 2 da Matriz/genética , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Ligação Proteica , Mapas de Interação de Proteínas/genética
13.
Biochem Biophys Res Commun ; 496(1): 218-224, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29307834

RESUMO

Previous studies show that gamma-glutamylcyclotransferase (GGCT) is expressed at high levels in various cancer tissues and that its knockdown inhibits MCF7 cancer cell growth via upregulation of p21WAF1/CIP1 (p21). However, the detailed underlying mechanism is unclear. Here, we used yeast two-hybrid screening and co-immunoprecipitation to identify Prohibitin-2 (PHB2) as a novel protein that interacts with GGCT. We also show that nuclear expression of PHB2 in MCF7 cells falls upon GGCT knockdown, and that overexpression of PHB2 inhibits p21 upregulation. A chromatin immunoprecipitation assay revealed that nuclear PHB2 proteins bind to the p21 promoter, and that this interaction is abrogated by GGCT knockdown. Moreover, knockdown of PHB2 alone led to significant upregulation of p21 and mimicked the cellular events induced by GGCT depletion, including G0/G1 arrest, cellular senescence, and growth inhibition, in a p21 induction-dependent manner. Taken together, the results indicate that PHB2 plays a central role in p21 upregulation following GGCT knockdown and as such may promote deregulated proliferation of cancer cells by suppressing p21.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Repressoras/metabolismo , gama-Glutamilciclotransferase/metabolismo , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Proibitinas , Ligação Proteica , gama-Glutamilciclotransferase/genética
14.
Biol Chem ; 399(11): 1297-1304, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044758

RESUMO

This study aimed to explore a role of p21Waf1 in γH2AX foci formation and DNA repair as assessed by a Host-Cell Reactivation Assay in wild-type (p21Waf+/+) and p21Waf1-deficient E1A+Ras-transformed cells. p21Waf1+/+ cells have low γH2AX background compared to p21Waf1-/- cells. The treatment with histone deacetylase inhibitor (HDI) sodium butyrate (NaBut) causes to accumulation of γH2AX in p21Waf+/+ cells with little effect in p21Waf-/- cells. Moreover, NaBut inhibits DNA repair in wt cells but not in p21Waf1-/- cells. This could be explained by the weakening of GADD45 and PCNA proteins binding in NaBut-treated p21Waf1-expressing cells but not in p21Waf1-/- cells. We suggest that in wt-ERas cells NaBut activates both p21Waf1 expression and a release of p21Waf1 from the complexes with E1A that leads to suppression of DNA repair and promotes γH2AX persistency. The absence of p21Waf1 is by itself considered by the cell as stressful factor with formation of γH2AX. But the lack of p21Waf1 interferes with an inhibitory effect of NaBut to inhibit DNA repair and thereby to stop concomitant accumulation of harmful mutations. We conclude that p21Waf1 is directly involved in control of genome integrity and DNA repair acting through modulation of the components of the DNA repair machinery.


Assuntos
Ácido Butírico/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA , Inibidores de Histona Desacetilases/farmacologia , Animais , Linhagem Celular Transformada , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Camundongos , Camundongos Knockout
15.
Histopathology ; 72(7): 1164-1171, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29392752

RESUMO

AIMS: Cellular senescence plays a role in tumour suppression and in the pathogenesis of various non-neoplastic diseases, including primary biliary cholangitis and other adult cholangiopathies. Less is known about the role of cellular senescence in cholangiopathies in children. With that in mind, we examined the expression of senescence-associated cell cycle regulators in biliary atresia, the most common form of paediatric obliterative cholangiopathy. METHODS AND RESULTS: The expression of senescence-associated cell cycle regulators (p16Ink4a and p21WAF1/Cip1 ) and a ductular reaction related marker (neural cell adhesion molecule: NCAM) was examined in bile ducts and bile ductules in liver samples taken from the patients with biliary atresia [n = 80; including 23 samples at the time of the Kasai procedure (KP) and 63 obtained from the explanted liver (LT) (six cases with samples at both surgical stages of disease)] and from appropriate controls (n = 17). The degree of ductular reaction and cholestasis was significantly more extensive in LT than KP (P < 0.01). The expression of p16INK4a and NCAM was significantly more extensive in bile ducts and bile ductules in ductular reaction in both KP and LT compared to controls and in LT compared to KP (P < 0.05). The expression of p21WAF1/Cip1 was significantly more extensive in bile ducts and bile ductules in KP compared to both LT and controls (P < 0.01). CONCLUSIONS: Cellular senescence may play a role in the progression of bile duct loss in biliary atresia in a manner similar to that of adult cholangiopathies.


Assuntos
Atresia Biliar/metabolismo , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Atresia Biliar/patologia , Atresia Biliar/cirurgia , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Fígado/metabolismo , Fígado/patologia , Transplante de Fígado , Masculino
16.
J Neurooncol ; 136(3): 485-494, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29230669

RESUMO

Cell cycle control can prevent excessive proliferative response in the pituitary homeostasis. Cyclin dependent kinases (Cdks) are modulated by cyclins or Cdk inhibitors, such as p21 and p27, which can regulate cell cycle progression from the G1 to S phases. This study was conducted to evaluate the levels and the promoter region methylation status of p21 and p27 in prolactinomas (PRL) and analyze their association with clinicopathologic features. We found high-p21 level cases were featured by 5/23 and H-scores 142.3 ± 23.7 in invasive-PRL specimens, and 19/25 and 221.3 ± 45.4 in non-invasive specimens (x2 = 14.11, p = 0.000), while high-p27 level cases were featured by 6/23 and H-scores 129.8 ± 31.1 in invasive-PRL specimens, and 18/25 and 197.1 ± 46.6 in non-invasive specimens (x2 = 10.11, p = 0.001). A similar trend was also observed for p21 and p27 protein levels in PRL specimens through western-blot (P < 0.01, respectively). The Ki-67 index was much higher in invasive specimens than in non-invasive specimens (x2 = 10.10, p = 0.001). Average 33 CpG sites per sample were analyzed by using MALDI-TOF Mass array, and 7/33 CpG sites methylation levels of p27 were higher than 50%. There existed significant differences in 4 CpG sites between invasive specimens and non-invasive specimens (p < 0.01). We found that D2 receptor was closely correlated with p21 levels (P < 0.05, r = 0.567) and p27 levels (P < 0.05, r = 0.591). In PRL, the deficiency in p21 and p27 contributed to the tumor proliferation and migration and Cdk inhibitors may be used as a new therapeutic approach.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Metilação de DNA , Invasividade Neoplásica/fisiopatologia , Neoplasias Hipofisárias/metabolismo , Prolactinoma/metabolismo , Adolescente , Adulto , Biomarcadores Tumorais/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Prolactinoma/genética , Prolactinoma/patologia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Adulto Jovem
17.
Exp Cell Res ; 358(2): 279-289, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684116

RESUMO

CD147 is a multifunctional trans-membrane glycoprotein, which is highly expressed in many cancers. However, the mechanism by which CD147 modulates cell proliferation is not fully understood. The aim of this study is to investigate the role of CD147 in cell proliferation associated with the TGF-ß/Smad4 signaling pathway. Here, we used cell viability and clone formation assays in LNCaP prostate cancer cells to demonstrate that CD147 promotes cell proliferation. The luciferase assay and western blotting show that silencing CD147 using shRNA enhances transcription and expression of p21WAF1. Using immunofluorescence and nuclear-cytoplasmic separation, we show that this is primarily attributed to transport of Smad4 from the cytoplasm to nucleus. Other assays (GST pull-down, co-immunoprecipitation and immunofluorescence) demonstrate that Smad4 is a new interaction partner of CD147, with the Smad4 MH2 domain and CD147 intracellular domain (CD147-ICD) being involved in the interaction. Furthermore, we report that a phosphoserine (pSer) in CD147 (pSer252) is responsible for this interaction and inhibition of the Smad4/p21WAF1 signal that promotes cell proliferation. Our results provide a novel molecular mechanism for CD147-induced cell proliferation associated with Smad4 signal inhibition.


Assuntos
Basigina/genética , Proliferação de Células/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Proteína Smad4/metabolismo , Basigina/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Transativadores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Arch Toxicol ; 92(2): 679-692, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28940008

RESUMO

Dexamethasone (Dex), a glucocorticoid with strong anti-inflammatory and immunosuppressive activities, has been shown to exhibit marked cytotoxicity and apoptosis in osteoblasts, but the underlying mechanisms have not yet been comprehensively investigated. P21Waf1/Cip1 (p21) plays a critical role in the regulation of cell cycle progression and apoptosis. The present study aims to investigate the role of p21 in Dex-induced apoptosis in osteoblastic MC3T3-E1 cells, and to explore its mechanisms. Results demonstrated that Dex-induced apoptosis decreased the phosphorylation of Akt in a concentration-dependent manner. Moreover, LY294002, an inhibitor of the PI3K/Akt pathway enhanced the Dex-induced apoptosis of osteoblasts. On the contrary, insulin-like growth factor-1 (IGF-1), an activator of PI3K/Akt, attenuated the apoptosis of Dex in MC3T3-E1 cells. The protein level of p21 was downregulated by shortening its half-life, which was associated with inhibition of the PI3K/Akt pathway by Dex. Furthermore, depletion of p21 by siRNA enhanced Dex-induced caspase-3 activation and ROS generation, and promoted apoptosis of MC3T3-E1 cells. In addition, suppression of p21 led to a reduction of Dex-induced upregulation of nuclear Nrf2 and heme oxygenase-1 (HO-1) protein levels. These findings demonstrate that p21 depletion promotes Dex-induced apoptosis of MC3T3-E1 cells by inhibiting the antioxidant Nrf2/HO-1 pathway, which highlights the anti-apoptotic effect of p21 in MC3T3-E1 cells.


Assuntos
Apoptose/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dexametasona/farmacologia , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos/efeitos dos fármacos , Células 3T3 , Animais , Caspase 3/metabolismo , Cromonas/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo , Heme Oxigenase-1/genética , Proteínas de Membrana/genética , Camundongos , Morfolinas/farmacologia , Fator 2 Relacionado a NF-E2/genética , Osteoblastos/citologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Arch Gynecol Obstet ; 297(4): 977-984, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29417283

RESUMO

PROPOSE: Endometriosis is a benign disease characterized by implantation and the growth of endometrial tissue outside the uterine cavity and it shares similarities with cancer. Lamin B1, p16 and p21 play a role on cell cycle regulation, development, cell repair and its activities are related to cancers. Considering the similarities between endometriosis and cancer, the aim of the present cross-sectional study is to detect p16, p21 and Lamin B1 in the ectopic endometrium of patients with endometriosis (n = 8) with eutopic (n = 8) and control endometrium (n = 8) and relate them to the maintenance and development of endometriosis. METHODS: Biopsies were obtained from both eutopic and ectopic, from deep infiltrating lesions, endometrium frozen and used for immunofluorescent (p16) or immunohistochemistry procedures (p16, p21, lamin B1). RESULTS: Detected higher lamin B1 in the eutopic endometrium when compared with ectopic endometrium, with no differences between endometriosis tissue with control endometrium. Similar presence of p16 in all groups of patients and no p21 detection was observed. CONCLUSION: We observed reduced detection of lamin B1 in the ectopic endometrium raising the possibility that the presence of senescent cells might be contributing to the maintenance and progression of endometriosis by apoptosis resistance and peritoneal stress inherent of the disease.


Assuntos
Biópsia , Endometriose/metabolismo , Endométrio/metabolismo , Lamina Tipo B/metabolismo , Doenças Uterinas/metabolismo , Adulto , Apoptose , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Endometriose/sangue , Endometriose/patologia , Endométrio/patologia , Feminino , Imunofluorescência , Genes p16 , Humanos , Imuno-Histoquímica , Lamina Tipo B/genética , Doenças Uterinas/sangue , Doenças Uterinas/patologia , Útero/patologia
20.
Mol Biol (Mosk) ; 52(3): 489-500, 2018.
Artigo em Russo | MEDLINE | ID: mdl-29989581

RESUMO

Embryonic stem cells (ESCs) have the capacity for self-renewal and pluripotency. Due to high proliferative activity, ESCs use a specific pathway of the formation of ATP molecules, which can lead to the development of the adaptive metabolic response under the conditions of energy deficiency (which is different from the response of differentiated cells). It is known that metabolic signals are integrated with the cell cycle progression; however, the signaling pathways that connect the availability of nutrients with the regulation of cell cycle in ESCs are insufficiently studied. We have studied the effect of the AICAR agent, which imitates an increase in AMP level and induces the activation of the metabolic sensor AMPK, on proliferation, cell cycle distribution, and pluripotency of mouse ESCs (mESCs). It has been demonstrated that cells treated with AICAR do not stop at the control G1/S point of the cell cycle, since they do not accumulate P21/WAF1 (G1/S checkpoint regulator), despite P53 activation. On the contrary, AICAR increases the rate of mESC proliferation, which correlates with increased expression of pluripotency marker genes (OCT3/4, NANOG, SOX2, KLF4, ESRRB, PRDM14). In addition, an increase in the transcription of the HIFlα gene (a key regulator of the cell proliferation and viability, as well as glucose metabolism under stress) was detected. An increase in the expression of glycolytic enzyme genes (LDHA, ALDOA, PCK2, GLUT4) under the effect of AICAR indicates a change in mESC metabolism towards increased glycolysis. Thus, AICAR-dependent AMPK activation as one of possible mechanisms of the mESC adaptive response to the emergence of energetic imbalance is not accompanied by a cell cycle arrest at the G1/S checkpoint, but involves the processes of increasing glycolytic activity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Antígenos de Diferenciação/biossíntese , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Aminoimidazol Carboxamida/farmacologia , Animais , Ativação Enzimática/efeitos dos fármacos , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Embrionárias Murinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA