Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 2262020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32313426

RESUMO

There is limited understanding of adverse health effect associations with chemical constituents of fine particulate matter (PM2.5) as well as the underlying mechanisms. We outlined a workflow to assess metrics, beyond concentration, using household and personal PM2.5 filter samples collected in India as a proof of concept for future large-scale studies. Oxidative potential, chemical composition (polycyclic aromatic hydrocarbons and elements), and bioactivity (developmental exposures in zebrafish) were determined. Significant differences were observed in all metrics between personal and household PM2.5 samples. This work established methods to characterize multiple metrics of PM2.5 to ultimately support the identification of more health-relevant metrics than concentration.

2.
Environ Sci Pollut Res Int ; 31(6): 9713-9731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194174

RESUMO

Indoor pollution and deposition dust (DD), in particular, are acquiring concern, due to long exposure time and importance of intake by humans through contact and ingestion. Hospitals look a special category of sites, owing to peculiar contaminants affecting them and to presence of people prone to adverse effects induced by toxicants. Four in-field campaigns aimed at understanding the chemical composition of DD were performed in five Italian hospitals. Measurements were performed before (autumn 2019), during (spring 2021), and after (winter 2022) the peak of SARS-CoV2 and when restrictions caused by pandemic were revoked (winter 2023). Parallel measurements were made outdoors (2022), as well as in a university and a dwelling. Targeted contaminants were n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while iso- and anteiso-alkanes were analyzed to assess the impact of tobacco smoking. Total n-alkanes ranged from 3.9 ± 2.3 to 20.5 ± 4.2 mg/g, with higher percentages of short chain homologs in 2019. PAHs ranged from 0.24 ± 0.22 to 0.83 ± 0.50 mg/g, with light congeners (≤ 228 a.m.u.) always exceeding the heavy ones (≥ 252 a.m.u.). According to carbon preference indexes, alkanes originated overall from anthropogenic sources. Microorganisms resulted to affect a hospital, and tobacco smoke accounted for ~ 4-20‰ of DD mass. As for PAH sources, the diagnostic concentration ratios suggested the concourse of biological matter burning and vehicle emission. Benzo[a]pyrene equivalent carcinogenic and mutagenic potencies of depositions at hospitals ranged ~ 9-39 µg/g and ~ 15-76 µg/g, respectively, which seems of concern for health. DD composition in hospitals was different from that outside the premises, as well as that found at university and at dwelling.


Assuntos
COVID-19 , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental/métodos , RNA Viral , Pandemias , SARS-CoV-2 , Substâncias Perigosas , Poeira
3.
Environ Pollut ; 335: 122237, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481028

RESUMO

Peatland fires are one of the major global sources of atmospheric particles. Emission factors for fine (PM1 and PM2.5) and ultrafine (PM0.1) particles and particle-bound polycyclic aromatic hydrocarbons (PAHs) from plants in the peat swamp forest (PSF), including Melaleuca cajuputi leaves, M. cajuputi branches, M. cajuputi bark, Lepironia articulata (Retz.) Domin, forest leaf litter and peat were measured in a laboratory combustion chamber. From these measurements, new PAH diagnostic ratios for fine and ultrafine particles were proposed for identifying the forest burning source. The new emission factors for PM were PM0.1: 0.03-0.33, PM1: 0.69-2.11 and PM2.5: 1.12-4.18 g/kg; for PM-bound PAHs, the factors were PM0.1: 5.7-166.0, PM1: 31.5-1338.9 and PM2.5: 36.3-3641.1 µg/kg. The predominant PAHs for PSF burning were Pyr, BbF, DBA (in PM0.1), Flu, DBA, BghiPe (in PM1), and BbF, DBA and BghiPe (in PM2.5). We also presented new diagnostic ratios for PSF burning, including BaP/(BaP + Chr): 0.39-0.75, BaP/(BaP + BbF): 0.21-0.47 and BaA/(BaA + Chr): 0.36-0.53. Moreover, the physical and chemical characteristics of ambient fine and ultrafine particles in the Kuan Kreng forest during the 2019 forest fire (FF) and 2021 non-forest fire (NFF) periods were investigated. The mean PM0.1, PM1 and PM2.5 concentrations during the FF period were approximately 3.5-4.4 times as high as those during the 2021 NFF period. New PAH diagnostic ratios of BaP/(BaP + BbF) versus BaP/(BaP + Chr) were able to identify PAH burning sources in PM1 and PM2.5 but were less clear for PM0.1, which was dominated by a single source - M. cajuputi. Chemical mass balance studies identified peat forest burning emissions as the main source of fine and ultrafine particles during the FF period. This study suggests that the new PAH diagnostic ratios can be used to identify the burning source for more precise source apportionment.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Material Particulado/análise , Poluentes Atmosféricos/análise , Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Áreas Alagadas , Monitoramento Ambiental
4.
Toxics ; 11(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368618

RESUMO

Airborne particulate matter (PM) is a vector of many toxic pollutants, including polyaromatic hydrocarbons (PAHs) and their derivatives. Especially harmful is the fine fraction (PM2.5), which penetrates deep into the lungs during inhalation and causes various diseases. Amongst PM2.5 components with toxic potential are nitrated PAHs (NPAHs), knowledge of which is still rudimentary. Three of the measured NPAHs (1-nitropyrene (1-nP), 9-nitroanthracene (9-nA), and 6-nitrochrysene (6-nC)) were detected in ambient PM2.5 from Ljubljana, Slovenia, along with thirteen non-nitrated PAHs. The highest concentrations of pollutants, which are closely linked with incomplete combustion, were observed in the cold part of the year, whereas the concentrations of NPAHs were roughly an order of magnitude lower than those of PAHs throughout the year. Further on, we have evaluated the toxicity of four NPAHs, including 6-nitrobenzo[a]pyrene (6-nBaP), to the human kidney cell line, HEK293T. The most potent was 1-nP (IC50 = 28.7 µM), followed by the other three NPAHs, whose IC50 was above 400 or 800 µM. According to our cytotoxicity assessment, atmospheric 1-nP is the most harmful NPAH among the investigated ones. Despite low airborne concentrations of NPAHs in ambient air, they are generally considered harmful to human health. Therefore, systematic toxicological assessment of NPAHs at different trophic levels, starting with cytotoxicity testing, is necessary in order to accurately evaluate their threat and adopt appropriate abatement strategies.

5.
Environ Sci Pollut Res Int ; 29(11): 15849-15862, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34636003

RESUMO

Surface sediments along the Southern Terengganu coast (≤7 km from the coast) were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 USEPA priority polycyclic aromatic hydrocarbons (ΣPAH16) ranged from 2.59 to 155 ng g-1 and their respective alkylated ranged between 8.80 and 24.90 ng g-1. Traces of acephenanthrylene, benzo[c]phenanthrene, thiophenic PAH, and benzonaphthofuran were identified. PAH diagnostic ratios and cross-plots revealed that these sedimentary PAH compounds are derived mainly from pyrogenic sources, primarily from biomass burning and petroleum combustion residues with minor petrogenic input. The high correlations between pyrogenic PAHs to total PAHs (r >0.73, p <0.5), and the Bap/Bep ratio to total PAHs (r = 0.88, p <0.5), suggest that atmospheric deposition and urban runoff are the main deposition pathways. The concentrations of the PAHs in the southern South China Sea fall in the moderate contamination range of 100-1000 ng g-1.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Malásia , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
6.
Mar Pollut Bull ; 166: 112248, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33735704

RESUMO

A forensic source evaluation of polycyclic aromatic hydrocarbons (PAHs) in nearshore sediments in San Francisco Bay examined total PAH greater than ambient concentrations in sediments, and potential pyrogenic source relationships with respect to PAH compounds typically associated with point and nonpoint pyrogenic source types, including PAHs potentially associated with historical manufactured gas plant (MGP) operations. Diagnostic source ratio analysis was employed for determination of potential PAH source relationships. A two-model approach indicated distinct potential source signatures, as identified from the distributions of higher PAH concentrations in some sediments. Source characterization was aided by Polytopic Vector Analysis (PVA) and data visualization with t-Distributed Stochastic Neighbor Embedding (t-SNE). Two signatures exhibited pyrogenic character likely consistent with historical MGP sources, and one signature was related to creosote. A distinct and significant source of PAHs to the investigation area sediment consisted of ubiquitous nonpoint and potential unidentified point sources is termed "urban influence".


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Baías , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , São Francisco , Poluentes Químicos da Água/análise
7.
Air Qual Atmos Health ; 14(9): 1375-1391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880133

RESUMO

Size distribution of toxicants in airborne particulates remains insufficiently investigated in Algeria. A 1-year campaign was performed at Bab Ezzouar, Algiers (Algeria), aimed at characterizing particulates for their physical and chemical features. For this purpose, scanning electronic microscopy (SEM), Raman spectroscopy (RaS), and GC-MS methodologies were applied. The samples were collected on daily basis by means of a high-volume sampling (HVS) system equipped with cascade impactor separating three size fractions, i.e., particles with aerodynamic diameters d < 1.0 µm (PM1), 1.0 µm

8.
Chemosphere ; 219: 662-670, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30557722

RESUMO

The influence of biochar added to an agricultural soil on polycyclic aromatic hydrocarbon (PAH) levels, PAH diagnostic ratios and soil properties was investigated in a five-year field experiment. The experiment was carried out in an Italian vineyard and included two biochar treatments: 16.5 t ha-1 of biochar applied in 2009 (soil B); 16.5 t ha-1 in 2009 and further 16.5 t ha-1 in 2010 (soil BB). A set of 75 samples that included five replicates and a control soil (untreated) was characterized in terms of organic carbon, pH, cation exchange capacity (CEC), bulk density and concentration of PAHs. Biochar addition to soil caused an increase in organic carbon, pH and CEC, and a decrease of bulk density. After almost two years the first application of biochar, PAH concentrations were higher in soil B (56 ng g-1) and BB (153 ng g-1) in comparison to control soil (24 ng g-1). Thereafter, PAH concentrations decreased significantly, but the original PAHs levels were reached only in soil B after five years. The naphthalene/(naphthalene + phenanthrene) ratios were higher in the treated soils in accordance to the dominance of naphthalene in the original biochar. The cross plots naphthalene/(naphthalene + phenanthrene) vs. fluoranthene/(fluoranthene + pyrene) enabled to trace the signature of biochar PAHs up to five years after its first application. Diagnostic ratios can be a useful tool to study the persistence of PAHs introduced in soil by biochar when the pattern of these contaminants in biochar and original soil are different.


Assuntos
Carvão Vegetal/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/química , Agricultura , Itália , Naftalenos , Fenantrenos , Pirenos
9.
Sci Total Environ ; 691: 528-537, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325853

RESUMO

Multiple source apportionment approaches were employed to investigate PAH sources which contribute to small craft harbor (SCH) sediments in Nova Scotia (NS), Canada. A total of 580 sediment samples were analyzed using PAH diagnostic ratios, Unmix Optimum receptor modeling, and by assessment of the composition of the PAH profile. PAH diagnostic ratios suggest PAHs are primarily of pyrogenic (thermal) origin, while UnmixO modeling identifies four individual sources which best describe surficial sediments and suggests contributions from both pyrogenic and petrogenic origins. These include coal combustion, automobile exhaust, and biomass incineration. PAH profile assessment determined an overwhelming contribution of high molecular weight PAHs, which exhibited a strong correlation with total PAH concentrations.

10.
Sci Total Environ ; 628-629: 1462-1488, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045566

RESUMO

In this study, a large sample set (276) was separated into up to 15 groups, including coal, fly ash, total particulate matter, coal wastes, river sediments, and different water types. Grouping the sample set into these categories helped to identify the typical features of combustion or water-washing and compare them using newly developed polycyclic aromatic hydrocarbon diagnostic ratios. A wide range of organic pollutants were identified in samples, including aromatic and polycyclic hydrocarbons, nitrogen-heterocycles, sulphur-heterocycles + trithiolane, and polycyclic aromatic hydrocarbons substituted with oxygen functional groups. The distribution of compounds was significantly influenced by water washing or combustion. During the self-heating of coal wastes, secondary compounds such as chlorinated aromatics (chlorobenzene, chloroanthracene, etc.) or light sulphur compounds (e.g. benzenethiol and benzo[b]thiophene) were formed (synthesised). Since these compounds are generally absent in sedimentary organic matter, their origin may be connected with high-temperature formation in burning coal dumps. These compounds should be identified as persistent organic pollutants (POPs) in the environment. The newly defined diagnostic ratios have worked well in separating samples (petrogenic and pyrogenic) and have pointed out the effect of incomplete combustion on self-heated coal waste, ash from domestic furnaces, or water washing and biodegradation of the studied compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA