Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Hematol Oncol ; 42(1): e3219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690092

RESUMO

Progesterone and adiponectin receptor 3 (PAQR3) has been found to regulate tumor progression by mediating cell ferroptosis. However, whether PAQR3 mediates ferroptosis in diffuse large B-cell lymphoma (DLBCL) needs further investigation. The mRNA and protein levels of PAQR3 and low-density lipoprotein receptor (LDLR) were assessed by qRT-PCR and WB assays. Cell proliferation was detected by MTT assay and EdU assay. Shrunken mitochondria was counted under transmission electron microscope. Cell ferroptosis was evaluated by measuring the levels of malondialdehyde, reactive oxygen species, glutathione, Fe2+ , and the protein expression of ferroptosis-related markers. PAQR3 and LDLR interaction was confirmed by RIP assay and pull-down assay. Our study showed that PAQR3 was underexpressed, while LDLR was overexpressed in DLBCL tissues and cells. Functionally, PAQR3 overexpression or LDLR knockdown restrained DLBCL cell proliferation and enhanced ferroptosis. Mechanistically, PAQR3 reduced LDLR expression by inhibiting its mRNA stability. Meanwhile, LDLR overexpression reversed PAQR3-mediated the promoting on DLBCL cell ferroptosis, and LY294002 (PI3K/AKT inhibitor) eliminated the inhibiting effects of LDLR overexpression on DLBCL cell ferroptosis. Additionally, excessive PAQR3 reduced DLBCL tumor growth by enhancing tumor cell ferroptosis through LDLR-mediated PI3K/AKT pathway. In conclusion, our data suggested that PAQR3 restrained DLBCL progression by aggravating ferroptosis, which was achieved by inhibiting LDLR expression to repress PI3K/AKT pathway.


Assuntos
Ferroptose , Linfoma Difuso de Grandes Células B , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Progesterona , Receptores de Adiponectina , Linfoma Difuso de Grandes Células B/patologia , Linhagem Celular Tumoral , Proliferação de Células
2.
Clin Exp Nephrol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080055

RESUMO

BACKGROUND: Methyltransferase 14 (METTL14) mediated N6-methyladenine (m6A) RNA methylation and progestin and AdipoQ receptor family member 3 (PAQR3) are reported to be involved in diabetic nephropathy (DN) progression. Here, we explored whether the effects of PAQR3 on DN was associated with METTL14-induced m6A and their relationship with macrophage-related exosomes in DN progression. METHODS: Human glomerular endothelial cells (GECs) were incubated in high glucose (HG) condition to mimic DN condition in vitro. Exosomes were isolated from M1 macrophages and co-cultured with GECs. qRT-PCR and western blotting detected the levels of genes and proteins. Cell functions were determined using cell counting kit-8 assay and flow cytometry. ELISA analysis detected inflammatory factors, and oxidative stress was evaluated by measuring reactive oxygen species and malondialdehyde. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction was verified by dual-luciferase reporter assay. RESULTS: HG elevated PAQR3 expression levels in GECs. PAQR3 silencing reversed HG-induced viability arrest, apoptosis, inflammatory response, and oxidative stress. M1 macrophage co-culture could suppress HG-induced GEC injury. PAQR3 was packaged into M1 macrophage-derived exosomes, and M1 macrophages regulated HG-induced GEC injury by secreting PAQR3 into cells via exosomes. Mechanistically, METTL14 induced PAQR3 m6A modification. METTL14 was enriched in M1 macrophage-derived exosomes. METTL14 knockdown in M1 macrophage-derived exosomes protected GEC from HG-induced viability arrest, apoptosis, inflammation and oxidative stress by regulating PAQR3. CONCLUSION: Exosomal METTL14 derived from M1 macrophages promoted HG-induced apoptosis, inflammation and oxidative stress in GECs by mediating PAQR3 m6A modification.

3.
Clin Exp Hypertens ; 46(1): 2326021, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38525833

RESUMO

PURPOSE: This study aimed to examine the impact of CA on DN and elucidate its underlying molecular mechanisms of inflammation. METHODS: We fed C57BL/6 mice injected with streptozotocin to induce diabetes. In addition, we stimulated NRK-52E cells with 20 mmol/L d-glucose to mimic the diabetic condition. RESULTS: Our findings demonstrated that CA effectively reduced blood glucose levels, and improved DN in mice models. Additionally, CA reduced kidney injury and inflammation in both mice models and in vitro models. CA decreased high glucose-induced ferroptosis of NRK-52E cells by inducing GSH/GPX4 axis. Conversely, the ferroptosis activator or the PI3K inhibitor reversed positive effects of CA on DN in both mice and in vitro models. CA suppressed PAQR3 expression in DN models to promote PI3K/AKT activity. The PAQR3 activator reduced the positive effects of CA on DN in vitro models. Moreover, CA directly targeted the PAQR3 protein to enhance the ubiquitination of the PAQR3 protein. CONCLUSION: Overall, our study has uncovered that CA promotes the ubiquitination of PAQR3, leading to the attenuation of ferroptosis in DN. This effect is achieved through the activation of the PI3K/AKT signaling pathways by disrupting the interaction between PAQR3 and the P110α pathway. These findings highlight the potential of CA as a viable therapeutic option for the prevention of DN and other forms of diabetes.


Assuntos
Ácidos Cafeicos , Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Succinatos , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Inflamação , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinação
4.
J Endocrinol Invest ; 46(10): 2103-2114, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37017919

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the complications of diabetes and has a high mortality, but its specific pathogenesis is not clear. In recent years, researches on the mechanism of circRNAs in DN have been proved a lot, whereas the functional mechanism of circ_0003928 in DN remains open and it must be investigated to value its important role in DN prevention. METHODS: HK-2 cells were treated with high glucose (HG), normal glucose (NG) or Mannitol. Cell counting kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Enzyme-linked immunosorbent assay (ELISA) was applied to analyze malondialdehyde (MDA) and superoxide dismutase 1 (SOD) levels. Flow cytometry and western blot were preformed to measure cell apoptosis. Real-time quantitative PCR (RT-qPCR) was used to test the levels of circ_0003928, miR-136-5p and progestin and adipoQ receptor family member 3 (PAQR3) mRNA. Western blot was executed to detect Bcl2 associated X (Bax), B cell leukemia/lymphoma 2 (Bcl2), smooth muscle (αSMA), apolipoprotein (C-IV) and PAQR3 levels. Luciferase reporter assay and RNA pull-down assay were used to analyze the target relationship between miR-136-5p and circ_0003928 or PAQR3. RESULTS: Circ_0003928 and PAQR3 expression were up-regulated, whereas miR-136-5p was decreased in DN serum and HG-induced HK-2 cells. Circ_0003928 knockdown promoted cell proliferation, and inhibit cell apoptosis, oxidative stress, and fibrosis in HK-2 cells under HG condition. MiR-136-5p silencing overturned the protective effects of si-circ_0003928 on HG-induced HK-2 cells. MiR-136-5p was targeted by circ_0003928 and directly targeted PAQR3. Overexpression of PAQR3 counteracted the inhibitory functions of circ_0003928 knockdown or miR-136-5p overexpression on HG-induced HK-2 cell injury. CONCLUSION: Circ_0003928 acted as a sponge of miR-136-5p to up-regulating PAQR3 expression, and then regulate the proliferation, oxidative stress, fibrosis and apoptosis in HG-induced HK-2 cells.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Humanos , Nefropatias Diabéticas/genética , Apoptose , Bioensaio , Glucose , MicroRNAs/genética
5.
J Clin Lab Anal ; 36(9): e24617, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35870178

RESUMO

OBJECTIVES: To investigate the function of PAQR3 in gastric cardia adenocarcinoma (GCA) and understand the possible mechanism of PAQR3 in regulating epithelial-mesenchymal transition (EMT). METHODS: We detected PAQR3 protein in 146 GCA tissues and paired normal adjacent tissues (PNTs) specimens using immunohistochemical analysis, and explored its clinical significance. The expression levels of PAQR3 protein in 20 GCA tissues, their paired PNTs, HGC27, SGC7901, and GES-1 cells were analyzed by Western blot. Wild-type PAQR3 was overexpressed in HGC27 cells. The effects of PAQR3 overexpression on the function of HGC27 cells and its underlying mechanisms were then analyzed through a series of cell and molecular biology experiments. RESULTS: PAQR3 was significantly down-regulated in GCA tissues when compared with paired PNTs (p < 0.0001). The expression level of PAQR3 in GCA tissues was significantly negatively correlated with Helicobacter pylori infection (p = 0.000), venous invasion (p = 0.000), invasion depth (p = 0.000), lymph node metastasis (p = 0.022), tumor stage (p = 0.000), and patient survival (p = 0.009). Downregulation of PAQR3 was highly correlated with increased EMT signature and activated TGF-ß/Smad pathway in GCA tissues. Overexpression of PAQR3 in HGC27 cells negatively regulates its cellular functions, such as cell proliferation and migration, and suppresses EMT. Mechanistically, overexpression of PAQR3 significantly down-regulates the protein expression levels of TGF-1, p-Smad2, and p-Smad3 in HGC27 cells. CONCLUSION: PAQR3 was significantly down-regulated in GCA tissues, HGC27, and SGC7901 cells. PAQR3 significantly inhibits the proliferation, migration, and invasion of HGC27 cells. Mechanistically, PAQR3 can inhibit the EMT process in HGC27 cells by regulating TGF-ß/Smad signaling pathway.


Assuntos
Adenocarcinoma , Infecções por Helicobacter , Helicobacter pylori , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Gástricas , Adenocarcinoma/patologia , Cárdia/metabolismo , Cárdia/patologia , Linhagem Celular Tumoral , Humanos , Proteínas Smad/metabolismo , Neoplasias Gástricas/patologia , Fator de Crescimento Transformador beta/metabolismo
6.
EMBO J ; 35(5): 496-514, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26834238

RESUMO

The Beclin1-VPS34 complex is recognized as a central node in regulating autophagy via interacting with diverse molecules such as ATG14L for autophagy initiation and UVRAG for autophagosome maturation. However, the underlying molecular mechanism that coordinates the timely activation of VPS34 complex is poorly understood. Here, we identify that PAQR3 governs the preferential formation and activation of ATG14L-linked VPS34 complex for autophagy initiation via two levels of regulation. Firstly, PAQR3 functions as a scaffold protein that facilitates the formation of ATG14L- but not UVRAG-linked VPS34 complex, leading to elevated capacity of PI(3)P generation ahead of starvation signals. Secondly, AMPK phosphorylates PAQR3 at threonine 32 and switches on PI(3)P production to initiate autophagosome formation swiftly after glucose starvation. Deletion of PAQR3 leads to reduction of exercise-induced autophagy in mice, accompanied by a certain degree of disaggregation of ATG14L-associated VPS34 complex. Together, this study uncovers that PAQR3 can not only enhance the capacity of pro-autophagy class III PI3K due to its scaffold function, but also integrate AMPK signal to activation of ATG14L-linked VPS34 complex upon glucose starvation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Glucose/deficiência , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/metabolismo , Masculino , Proteínas de Membrana , Camundongos Knockout , Músculo Esquelético/metabolismo , Corrida/fisiologia , Transdução de Sinais
7.
Exp Cell Res ; 381(2): 301-310, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31095939

RESUMO

Insulin resistance is a significant feature of type 2 diabetes mellitus and glucose and lipid metabolism disorders. Activation of NF-κB signaling pathway plays an important role in the formation of insulin resistance. FoxO1 plays a major role in regulating glucose and lipid metabolism, as well as insulin signaling pathway. Previous studies have shown that Progestin and AdipoQ Receptor 3 (PAQR3) suppresses the activity of PI3K/Akt, which is an upstream pathway of FoxO1, and additionally promotes the pathological process of diabetic renal inflammatory fibrosis via activating NF-κB pathway. On this basis, it has caused us great concern whether NF-κB is involved in PAQR3 regulation of FoxO1 under insulin resistance. In this study, we aimed to investigate whether PAQR3 regulates phosphorylation of FoxO1 via NF-κB pathway in palmitic acid (PA)-induced insulin-resistant HepG2 cells, thereby causing glucose and lipid metabolism disorders. We found that PA stimulation and PAQR3 overexpression decreased the phosphorylation of FoxO1 and the expressions of glucokinase (GCK) and low density lipoprotein receptor (LDLR), in addition, promoted the nuclear accumulation of NF-κB. Inhibition of NF-κB pathway increased the phosphorylation of FoxO1 and the expressions of GCK and LDLR which were downregulated by PA stimulation and PAQR3 overexpression. Taken together, in PA-induced insulin-resistant HepG2 cells, PAQR3 might regulate the phosphorylation of FoxO1 and the expressions of GCK and LDLR through NF-κB pathway, thereby regulating the glucose and lipid metabolism disorders induced by insulin resistance.


Assuntos
Proteína Forkhead Box O1/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fígado/metabolismo , Proteínas de Membrana/fisiologia , NF-kappa B/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Quinases do Centro Germinativo/genética , Quinases do Centro Germinativo/metabolismo , Células Hep G2 , Humanos , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Ratos , Ratos Sprague-Dawley , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais/genética
8.
Tumour Biol ; 37(1): 561-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26232324

RESUMO

Laryngeal squamous cell carcinoma (LSCC) is a common type of head and neck malignancy worldwide. The molecular mechanism of LSCC remains not well understood. PAQR3 (progestin and AdipoQ receptors) is a member of the progestin and adipoQ receptor (PAQR) family. Many studies have showed that PAQR3 acts as a new tumor suppressor. However, its expression and functions in LSCC are still unknown. In our study, the expression of PAQR3 was downregulated in human LSCC tissues compared to that in adjacent tissues. Moreover, overexpression of PAQR3 suppressed LSCC cell proliferation and invasion. In addition, PAQR3 inhibited cell proliferation and invasion by regulating ERK phosphorylation. In conclusion, our data demonstrated that PAQR3 acted a tumor suppressive role in LSCC, providing a novel diagnostic and therapeutic option for LSCC in the future.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Laríngeas/metabolismo , Proteínas de Membrana/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Invasividade Neoplásica , Fosforilação
9.
Ann Oncol ; 25(7): 1363-1372, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24799462

RESUMO

BACKGROUND: The aim of this study is to determine whether PAQR3, a protein specifically localized in the Golgi apparatus, is associated with tumor progression, metastasis and survival of human patients with gastric cancer. PATIENTS AND METHODS: PAQR3 expression status was investigated in a large panel of gastric cancer (n = 300) and their corresponding para-cancerous histological normal tissues (PCHNT) at both mRNA and protein levels. The correlation of PAQR3 expression levels with clinical features such as metastasis and prognosis was analyzed. The effect of PAQR3 on the growth and migration of gastric cancer cells was also determined. RESULTS: PAQR3 was frequently down-regulated in gastric cancer samples compared with PCHNT at both mRNA and protein levels (both P < 0.0001). The expression level of PAQR3 was negatively correlated with Helicobacter pylori infection (P < 0.0001), tumor size (P < 0.0001), tumor stage (P < 0.0001), venous and lymphatic invasion (P < 0.0001), distant and nodal metastasis (P < 0.0001), and patient survival (P < 0.0001). Down-regulation of PAQR3 was highly correlated with increased epithelial-mesenchymal transition (EMT) in gastric cancer samples. In addition, PAQR3 overexpression was able to negatively modulate cell proliferation, migration and EMT of gastric cancer cells. CONCLUSION: PAQR3 is markedly down-regulated in human gastric cancers. PAQR3 expression level is closely associated with the progression and metastasis of gastric cancers. PAQR3 is also a new genetic signature that can predict the prognosis of the patients with gastric cancer.


Assuntos
Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Metástase Neoplásica , Neoplasias Gástricas/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias Gástricas/metabolismo
10.
Sci Rep ; 14(1): 3030, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321173

RESUMO

Progesterone and AdipoQ Receptor 3 (PAQR3) is a member of the AdipoQ receptor. Our previous studies have found that PAQR3 plays a role as a candidate inhibitor in cardiac adenocarcinoma, breast cancer, gastric cancer and colorectal cancer, but the systematic analysis of PAQR3 in tumors is currently lacking. The objective of this study was to investigate the prognostic and therapeutic value of PAQR3 in 31 tumors. Through the analysis of TCGA, UALCAN, GEO, GEPIA2, TIMER, Kaplan-Meier plotter, TISIDB and other databases, it was found that the expression level of PAQR3 changed significantly in different tumor types, and the expression level of Neuroblastoma was very high. And the level of Prostate adenocarcinoma is low. In addition, the expression level of PAQR3 in Cholangiocarcinoma, Esophageal carcinoma, Head and neck squamous carcinoma, Liver Hepatocellular Carcinoma, Lung Adenocarcinoma and Lung squamous cell carcinoma was significantly higher than that in normal tissues. However, the expression level of PAQR3 in Breast Cancer, Kidney Renal Clear Cell Carcinoma, Kidney renal papillary cell carcinoma, Prostate Adenocarcinoma, Rectum Adenocarcinoma, Thyroid Cancer and Uterine Corpus Endometrial Carcinoma was lower than that in normal tissues. Subsequently, we explored the value of PAQR3 as a prognostic indicator of cancer. In Acute Myeloid Leukemia, Lower-grade Glioma and Glioblastoma, Pediatric Low-grade Gliomas, Kidney Chromophobe, and Thyroid Cancer, PAQR3 expression was positively correlated with OS and DSS, while in Rectum Adenocarcinoma, PAQR3 expression was negatively correlated with OS. PAQR3 high expression group Lower-grade Glioma and Glioblastoma, Pediatric Low-grade Gliomas, Uveal Melanoma, Kidney Chromophobe and DFI were positively correlated. PAQR3 can be used as a risk factor for the prognosis of multiple tumors. Then, we discussed the correlation between PAQR3 and immunology, and found that PAQR3 has a wide range of mutations in various tumor types, the most common mutation type is missense mutation, and common mutation types also include amplification, depth deletion, splicing, truncation and structural variation. Among the tumor samples with PAQR3 alterations, mutation occurred in all tumor samples except prostate adenocarcinoma and adrenal cortical carcinoma, head and neck squamous cell carcinoma, brain low-grade glioma, and kidney clear cell carcinoma, while esophageal adenocarcinoma had the highest total alteration frequency. PAQR3 was strongly associated with CNV in 18 tumors, particularly in Ovarian cancer, Lung squamous cell carcinoma, and Adenoid cystic carcinoma. On the other hand, PAQR3 has a higher SNV frequency in Uterine Corpus Endometrial Carcinoma, Skin Cutaneous Melanoma and Lung Adenocarcinoma, among which Uterine Corpus Endometrial Carcinoma has the highest SNV frequency. These results showed that PAQR3 expression levels were significantly correlated with tumor mutation load, microsatellite instability, neoantigens, and purity. In summary, PAQR3 can affect the tumor microenvironment and has potential for chemotherapy. Finally, we investigated the role of PAQR3 in tumor resistance and found that the expression of PAQR3 affects the efficacy of multiple chemotherapy drugs. Based on these studies, we found that PAQR3 plays an important role in cancer and has potential in tumor diagnosis and prognosis.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Renais , Carcinoma de Células Escamosas , Neoplasias do Endométrio , Glioblastoma , Glioma , Neoplasias Renais , Neoplasias Pulmonares , Melanoma , Neoplasias da Próstata , Neoplasias Cutâneas , Neoplasias da Glândula Tireoide , Criança , Feminino , Humanos , Masculino , Prognóstico
11.
Int J Gen Med ; 16: 4321-4328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767187

RESUMO

Cancer was one of the common causes of death in the world, and it was increasing year by year. At present, Progestin and AdipoQ receptor family member 3 (PAQR3) was widely studied in cancer. It has been found that PAQR3 was down regulated in various cancers, such as the gastric cancer, osteosarcoma, glioma, hepatocellular carcinoma, acute lymphoblastic leukemia, laryngeal squamous cell carcinoma, esophageal cancer, breast cancer, non-small cell lung cancer, and colorectal cancer. The decreased expression of PAQR3 was associated with short overall survival and disease-free survival in patients with gastric cancer, hepatocellular carcinoma, laryngeal squamous cell carcinoma, esophageal cancer, breast cancer, and non-small cell lung cancer. PAQR3 could inhibit cancer progression by using the Ras/Raf/MEK/ERK, PI3/AKT, EMT and other mechanisms, and was negatively regulated by the miR-543, miR-15b-5p and miR-15b. The roles and signaling mechanisms of PAQR3, and the relationship between the expression of PAQR3 and prognosis in cancer progression are reviewed in this article, and provides new tumor marker and idea to guide cancer treatment.

12.
Acta Pharm Sin B ; 12(6): 2887-2904, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35755276

RESUMO

The obstruction of post-insulin receptor signaling is the main mechanism of insulin-resistant diabetes. Progestin and adipoQ receptor 3 (PAQR3), a key regulator of inflammation and metabolism, can negatively regulate the PI3K/AKT signaling pathway. Here, we report that gentiopicroside (GPS), the main bioactive secoiridoid glycoside of Gentiana manshurica Kitagawa, decreased lipid synthesis and increased glucose utilization in palmitic acid (PA) treated HepG2 cells. Additionally, GPS improved glycolipid metabolism in streptozotocin (STZ) treated high-fat diet (HFD)-induced diabetic mice. Our findings revealed that GPS promoted the activation of the PI3K/AKT axis by facilitating DNA-binding protein 2 (DDB2)-mediated PAQR3 ubiquitinated degradation. Moreover, results of surface plasmon resonance (SPR), microscale thermophoresis (MST) and thermal shift assay (TSA) indicated that GPS directly binds to PAQR3. Results of molecular docking and cellular thermal shift assay (CETSA) revealed that GPS directly bound to the amino acids of the PAQR3 NH2-terminus including Leu40, Asp42, Glu69, Tyr125 and Ser129, and spatially inhibited the interaction between PAQR3 and the PI3K catalytic subunit (P110α) to restore the PI3K/AKT signaling pathway. In summary, our study identified GPS, which inhibits PAQR3 expression and directly targets PAQR3 to restore insulin signaling pathway, as a potential drug candidate for the treatment of diabetes.

13.
Endocrinol Diabetes Nutr (Engl Ed) ; 69(1): 34-42, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35232557

RESUMO

INTRODUCTION: This study aims to explore the effect and related molecular mechanism of miR-153-3p on high glucose-stimulated human glomerular mesangial cells. MATERIALS AND METHODS: The quantitative real-time polymerase chain reaction (qPCR) assay was employed to check miR-153-3p and PAQR3 expression levels in diabetic nephropathy patients. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay was applied to investigate the effects of miR-153-3p transfection or PAQR3 administration on mesangial cell (MC) activity. ELISA assays were used to check the expression levels of extracellular matrix (ECM) related proteins. The bioinformatics method and dual-luciferase reporter assay were employed together to anticipate and check the targeting relationship between miR-153-3p and PAQR3. Western blot assays were applied to check the PAQR3, PI3K and AKT expression after miR-153-3p transfection or PAQR3 administration. RESULTS: The expression level of miR-153-3p was lower in diabetic nephropathy patients, while the expression of PAQR3 was concomitantly higher. Upregulation of miR-153-3p can reduce MC proliferation and ECM accumulation. Further research indicated that miR-153-3p directly regulated PAQR3 expression via coupling with the 3'-UTR of PAQR3. Finally, the fact that miR-153-3p regulates the PI3K/AKT pathway by PAQR3 was confirmed. CONCLUSION: MiR-153-3p regulates the PI3K/AKT pathway through PAQR3, thereby playing a role in regulating cell proliferation and ECM accumulation in high glucose-stimulated MCs.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Nefropatias Diabéticas/genética , Matriz Extracelular/metabolismo , Glucose/farmacologia , Humanos , Células Mesangiais/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais
14.
Immun Inflamm Dis ; 9(3): 827-839, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33955706

RESUMO

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is a usual hematological tumor, which was featured by malignant proliferation of lymphoid progenitor cells. Many important factors participate into the regulation of ALL, including proteins. PAQR3 (also named RKTG) has been proved to take part in many human cancers by acting as a tumor suppressor. PAQR3 has bee n shown to repress human leukemia cells proliferation and induce cell apoptosis, but its role and relevant regulatory mechanism on cell proliferation and ferroptosis in ALL needs more exploration. METHODS: The genes expression was detected through quantitative reverse transcription polymerase chain reaction (mRNA) or western blot (protein). The cell proliferation was assessed through Cell Counting Kit-8 and 5-ethynyl-2-deoxyuridine assays. The levels of MDA, DCF, and intracellular free Fe in ALL cells were tested through the commercial kits. The cell apoptosis was determined through flow cytometry analysis. The binding ability of PAQR3 and nuclear factor erythroid 2-related factor 2 (Nrf2) was verified through pull down assay. RESULTS: PAQR3 expression was firstly assessed in ALL patients and cell lines, and discovered to be downregulated. It was verified that PAQR3 suppressed ALL cells proliferation. Further experiments proved that PAQR3 aggravates ferroptosis in ALL. In addition, AQR3 bound with Nrf2, and modulated its expression through ubiquitination in ALL. Finally, through rescue assays, it was demonstrated that Nrf2 overexpression reversed the effects of PAQR3 on cell proliferation and ferroptosis. CONCLUSION: Findings from our work uncovered that PAQR3 inhibited proliferation and aggravated ferroptosis in ALL through modulation Nrf2 stability. This study suggested that PAQR3 may serve as an effective biological marker for ALL treatment.


Assuntos
Ferroptose , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proliferação de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Fator 2 Relacionado a NF-E2/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
15.
Life Sci ; 265: 118806, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249098

RESUMO

AIMS: Neuronal apoptosis acts as the pivotal pathogenesis of cerebral ischemia/reperfusion (I/R) injury after ischemic stroke. PAQR3 (progestin and adipoQ receptor family member 3) is a crucial player who participates in the regulation of cell death. We aim to explore the specific function and the underlying mechanism of PAQR3 in cerebral I/R induced neuronal injury. MAIN METHODS: We established a mouse middle cerebral artery occlusion/reperfusion (MCAO/R) model and rat adrenal pheochromocytoma (PC12) cell oxygen-glucose deprivation/reperfusion (OGD/R) model to detect the expression and of PAQR3 after I/R treatment in vivo and in vitro. We used lentivirus to knockdown PAQR3 and investigated the function of PAQR3 in I/R induced neuronal apoptosis. KEY FINDINGS: PAQR3 expression is markedly increased in the ischemic hemisphere of C57BL/6 mice and PC12 cells after I/R stimulation. Knockdown PAQR3 can attenuate neuronal apoptosis induced by I/R in PC12 cells and exerts neuroprotective effects. PAQR3 deficiency can significantly raise cell viability and suppress LDH leakage under I/R treatment. Silencing PAQR3 attenuates neuronal apoptosis remarkably with fewer TUNEL-positive cells and lower apoptosis rate under I/R treatment. Mechanistically, knockdown of PAQR3 can inhibit the apoptosis pathway through inducing anti-apoptotic proteins and inhibiting pro-apoptotic proteins. Besides, PI3K/AKT signaling suppression with LY294002 abolished the neuroprotective functions induced by silencing PAQR3. SIGNIFICANCE: Our results elucidate that silencing PAQR3 can protect PC12 from OGD/R injury via activating PI3K/AKT pathway. And therefore, provide a novel therapeutic target for the prevention of cerebral I/R injury.


Assuntos
Isquemia Encefálica/metabolismo , Glucose/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas de Membrana/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose/fisiologia , Isquemia Encefálica/genética , Isquemia Encefálica/prevenção & controle , Hipóxia Celular/fisiologia , Inativação Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células PC12 , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle
16.
Diabetes Res Clin Pract ; 180: 109032, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34461141

RESUMO

AIMS: We aim to investigate the role of ADSCs (Adipose-derived stem cells)-derived exosomes on regulating angiogenesis in diabetic foot ulcers healing. METHODS: EPCs (endothelial progenitor cells) from human peripheral blood were applied as in vitro model of angiogenesis. Exosomes isolated from ADSCs culture medium were characterized by electron microscopy, size distribution and biomarker expression. Cell proliferation, migration, apoptosis and angiogenesis were detected by CCK-8 and EdU staining, wound healing, flow cytometry and tube formation assays, respectively. Rat diabetic foot model was further constructed for the evaluation of wound healing and histological alterations. RESULTS: EPCs from diabetes showed suppressed proliferation, migration and angiogenesis and decreased Twist1 protein. Similarly, high glucose repressed the proliferation, migration and angiogenesis of EPCs, which also elevated PAQR3 and suppressed Twist1 expression. However, these impaired EPCs biological functions were recovered by the application of exosomes from linc00511-overexpressing ADSCs, along with increased Twist1 and decreased PAQR3. Mechanistically, PAQR3 overexpression reduced Twist1 protein level in EPCs by enhancing BTRC-mediated Twist1 ubiquitin degradation. Exosomes from linc00511-overexpressing ADSCs alleviated rat diabetic foot ulcers by inhibiting Twist1 ubiquitination to promote angiogenesis. CONCLUSION: Exosomes from linc00511-overexpressing ADSCs promotes diabetic foot ulcers healing by accelerating angiogenesis via suppressing PAQR3-induced Twist1 ubiquitin degradation.


Assuntos
Diabetes Mellitus , Pé Diabético , Exossomos , Proteína 1 Relacionada a Twist/metabolismo , Animais , Pé Diabético/genética , Pé Diabético/terapia , Ratos , Células-Tronco , Proteína 1 Relacionada a Twist/genética , Cicatrização
17.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34247992

RESUMO

INTRODUCTION: This study aims to explore the effect and related molecular mechanism of miR-153-3p on high glucose-stimulated human glomerular mesangial cells. MATERIALS AND METHODS: The quantitative real-time polymerase chain reaction (qPCR) assay was employed to check miR-153-3p and PAQR3 expression levels in diabetic nephropathy patients. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay was applied to investigate the effects of miR-153-3p transfection or PAQR3 administration on mesangial cell (MC) activity. ELISA assays were used to check the expression levels of extracellular matrix (ECM) related proteins. The bioinformatics method and dual-luciferase reporter assay were employed together to anticipate and check the targeting relationship between miR-153-3p and PAQR3. Western blot assays were applied to check the PAQR3, PI3K and AKT expression after miR-153-3p transfection or PAQR3 administration. RESULTS: The expression level of miR-153-3p was lower in diabetic nephropathy patients, while the expression of PAQR3 was concomitantly higher. Upregulation of miR-153-3p can reduce MC proliferation and ECM accumulation. Further research indicated that miR-153-3p directly regulated PAQR3 expression via coupling with the 3'-UTR of PAQR3. Finally, the fact that miR-153-3p regulates the PI3K/AKT pathway by PAQR3 was confirmed. CONCLUSION: MiR-153-3p regulates the PI3K/AKT pathway through PAQR3, thereby playing a role in regulating cell proliferation and ECM accumulation in high glucose-stimulated MCs.

18.
J Mol Histol ; 51(3): 307-315, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448978

RESUMO

Cerebral ischemia-reperfusion injury is pivotal in the development of multiple-subcellular organelle and tissue injury after acute ischemic stroke. Recently, the Golgi apparatus (GA) has been shown to be a key subcellular organelle that plays an important role in neuroprotection against oxygen-glucose deprivation/reperfusion (OGD/R) injury. PAQR3, a scaffold protein exclusively localized in the GA, was originally discovered as a potential tumor suppressor protein. PAQR3 acts as a spatial regulator of Raf-1 that binds Raf-1 and sequesters it to the GA, where it negatively modulates the Ras/Raf/MEK/ERK signaling pathway in tumor models. Studies suggest that suppression of the ERK pathway can alleviate OGD/R-induced cell apoptosis. However, whether PAQR3 has potential effects on ischemic stroke and the underlying mechanism(s) remain unexplored. The current study is the first to show that PAQR3 was significantly downregulated in mouse neuroblastoma (N2A) cells upon OGD/R exposure, both at the mRNA and protein levels. Compared to that in controls, the mRNA level of PAQR3 began to decline at 0 h (0 h) after reperfusion, while the protein level began to decline at 4 h. Furthermore, overexpression of PAQR3 reduced OGD/R-induced apoptosis. The mRNA and protein levels of total ERK1 and ERK2 were unaltered, while activated p-ERK1 and p-ERK2 were decreased in N2A cells transfected with a PAQR3 expression vector after OGD for 4 h plus 24 h of reperfusion. Collectively, these data indicated that increased PAQR3 expression protected against OGD/R-induced apoptosis possibly by inhibiting the ERK signaling pathway. Therefore, PAQR3 might be a new attractive target in the treatment of OGD/R insult, and the underlying mechanism will pave the way for its potential experimental and clinical application.


Assuntos
Isquemia Encefálica/metabolismo , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose/genética , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Regulação para Baixo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Membrana/genética , Camundongos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transfecção
19.
Int J Clin Exp Pathol ; 13(7): 1676-1681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782688

RESUMO

Progesterone and adipoQ receptor family member 3 (PAQR3) and vascular endothelial growth factor (VEGF)-A are associated with tumorigenesis and progression. The aim of this study is to investigate the expression of PAQR3 and VEGF-A in pulmonary adenocarcinoma (PA) and explore their clinical and pathologic significance. The expressions of PAQR3 and VEGF-A protein were detected in 86 cases of human PA and 26 cases of tumor-adjacent tissue by immunohistochemistry. The positive rate of PAQR3 was 39.5% in PA, which was lower than that in tumor-adjacent tissues (80.8%), P=0.001. Negative expression of PAQR3 was obviously linked to tumor TNM stage, differentiation, and lymphatic metastasis; and P values were 0.013, 0.025, and 0.034, respectively. The positive expression rate of VEGF-A was 68.6% in human PA whichwas higher than that of tumor-adjacent tissues (11.5%), P<0.001. The positive expression of VEGF-A was correlated with tumor TNM stage, differentiation, and lymphatic metastasis, and P values were 0.026, 0.001 and P=0.001, respectively. The expression of PAQR3 was negatively correlated with the expression of VEGF-A (r=-0.698, P<0.001). Log-rank test statistical analysis suggested that patients with negative expression of PAQR3 or positive expression of VEGF-A had shorter overall survival. Cox multivariate analysis indicated that tumor TNM stage, differentiation, and lymphatic metastasis, and PAQR3 and VEGF-A expression were independent factors for prognosis of PA, and P values were 0.021, 0.017, 0.006, 0.018 and P=0.007 respectively. In conclusion, negative expression of PAQR3 and positive expression of VEGF-A are markedly correlated with tumor TNM classification, histologic grade, and lymphatic metastasis. Tumor TNM stage, differentiation, and lymphatic metastasis, negative expression of PAQR3, and positive expression of VEGF-A are risk factors for prognosis of patients with PA. Detection of PAQR3 and VEGF-A may be helpful to evaluate prognosis and infiltrative capability of PA.

20.
Cancer Manag Res ; 12: 353-362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021448

RESUMO

The Golgi apparatus is critical in the compartmentalization of signaling cascades originating from the cytoplasmic membrane and various organelles. Scaffold proteins, such as progestin and adipoQ receptor (PAQR)3, specifically regulate this process, and have recently been identified in the Golgi apparatus. PAQR3 belongs to the PAQR family, and was recently described as a tumor suppressor. Accumulating evidence demonstrates PAQR3 is downregulated in different cancers to suppress its inhibitory effects on malignant potential. PAQR3 functions biologically through the pathological regulation of altered signaling pathways. Significant cell proliferation networks, including Ras proto-oncogene (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), insulin, and vascular endothelial growth factor, are closely controlled by PAQR3 for physiologically relevant effects. Meanwhile, genetic/epigenetic susceptibility and environmental factors, may have functions in the downregulation of PAQR3 in human cancers. This study aimed to assess the subcellular localization of PAQR3 and determine its topological features and functional domains, summarizing its effects on cell signaling compartmentalization. The pathophysiological functions of PAQR3 in cancer pathogenesis, metabolic diseases, and developmental ailments were also highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA