Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.015
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 172(3): 534-548.e19, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29275861

RESUMO

Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRß signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.


Assuntos
Neoplasias Encefálicas/imunologia , Pontos de Checagem do Ciclo Celular , Glioblastoma/imunologia , Células Matadoras Naturais/imunologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Neoplasias Encefálicas/patologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Feminino , Glioblastoma/patologia , Humanos , Imunidade Inata , Interferon gama/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398113

RESUMO

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Assuntos
Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , Animais , Sobrevivência Celular/fisiologia , Feminino , Fibroblastos/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Transgênicos
3.
Cell ; 168(6): 1101-1113.e13, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283064

RESUMO

We molecularly dissected leptomeningeal metastasis, or spread of cancer to the cerebrospinal fluid (CSF), which is a frequent and fatal condition mediated by unknown mechanisms. We selected lung and breast cancer cell lines for the ability to infiltrate and grow in CSF, a remarkably acellular, mitogen-poor metastasis microenvironment. Complement component 3 (C3) was upregulated in four leptomeningeal metastatic models and proved necessary for cancer growth within the leptomeningeal space. In human disease, cancer cells within the CSF produced C3 in correlation with clinical course. C3 expression in primary tumors was predictive of leptomeningeal relapse. Mechanistically, we found that cancer-cell-derived C3 activates the C3a receptor in the choroid plexus epithelium to disrupt the blood-CSF barrier. This effect allows plasma components, including amphiregulin, and other mitogens to enter the CSF and promote cancer cell growth. Pharmacologic interference with C3 signaling proved therapeutically beneficial in suppressing leptomeningeal metastasis in these preclinical models.


Assuntos
Complemento C3/metabolismo , Neoplasias Meníngeas/secundário , Metástase Neoplásica/patologia , Animais , Neoplasias da Mama/patologia , Líquido Cefalorraquidiano , Plexo Corióideo/irrigação sanguínea , Complemento C3/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/patologia , Antígeno de Macrófago 1/metabolismo , Camundongos , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima
4.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37882745

RESUMO

Primitive erythropoiesis serves a vital role in embryonic development, generating primitive red blood cells responsible for transportation of oxygen throughout the body. Although diverse niche factors are known to function in definitive hematopoiesis, the microenvironment contributing to primitive hematopoiesis remains largely elusive. Here, we report that platelet-derived growth factor (PDGF) signaling is required for erythroid progenitor differentiation in zebrafish. Ablating pdgfαa (also known as pdgfaa) and pdgfαb (also known as pdgfab) or blocking PDGF signaling with an inhibitor impairs erythroid progenitor differentiation, thus resulting in a significant decrease in the number of erythrocytes. We reveal that pdgfαb is expressed in sclerotomal cells, and that its receptor genes, pdgfra and pdgfrb, are expressed in the adjacent erythroid progenitor cells. Sclerotome-specific overexpression of pdgfαb effectively restores primitive erythropoiesis in pdgfαa-/-;pdgfαb-/- mutant embryos. In addition, we have defined ERK1/2 signaling as a downstream pathway of PDGF signaling during embryonic erythropoiesis. Taken together, our findings indicate that PDGF signaling derived from sclerotome functions as a niche cue for primitive erythropoiesis.


Assuntos
Eritropoese , Fator de Crescimento Derivado de Plaquetas , Animais , Eritropoese/genética , Peixe-Zebra , Sinais (Psicologia) , Diferenciação Celular/genética , Desenvolvimento Embrionário
5.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922327

RESUMO

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Assuntos
Neoplasias Ósseas , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Metástase Neoplásica
6.
Artigo em Inglês | MEDLINE | ID: mdl-38980580

RESUMO

PDGF receptors play pivotal roles in both developmental and physiological processes through the regulation of mesenchymal cells involved in paracrine instructive interactions with epithelial or endothelial cells. Tumor biology studies, alongside analyses of patient tissue samples, provide strong indications that the PDGF signaling pathways are also critical in various types of human cancer. This review summarizes experimental findings and correlative studies, which have explored the biological mechanisms and clinical relevance of PDGFRs in mesenchymal cells of the tumor microenvironment. Collectively, these studies support the overall concept that the PDGF system is a critical regulator of tumor growth, metastasis, and drug efficacy, suggesting yet unexploited targeting opportunities. The inter-patient variability in stromal PDGFR expression, as being linked to prognosis and treatment responses, not only indicates the need for stratified approaches in upcoming therapeutic investigations but also implies the potential for the development of PDGFRs as biomarkers of clinical utility, interestingly also in settings outside PDGFR-directed treatments.

7.
Cell Mol Life Sci ; 81(1): 225, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769116

RESUMO

Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)ß controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRß is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.


Assuntos
Células Endoteliais , AVC Isquêmico , Linfocinas , Pericitos , Fator de Crescimento Derivado de Plaquetas , Pericitos/metabolismo , Pericitos/patologia , Animais , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Camundongos , Linfocinas/metabolismo , Linfocinas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Humanos , Células Endoteliais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Neovascularização Fisiológica , Movimento Celular
8.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027451

RESUMO

The axis of platelet-derived growth factor (PDGF) and PDGF receptor-beta (PDGFRß) plays prominent roles in cell growth and motility. In addition, PDGF-D enhances human natural killer (NK) cell effector functions when binding to the NKp44 receptor. Here, we report an additional but previously unknown role of PDGF-D, whereby it mediates interleukin-15 (IL-15)-induced human NK cell survival but not effector functions via its binding to PDGFRß but independent of its binding to NKp44. Resting NK cells express no PDGFRß and only a low level of PDGF-D, but both are significantly up-regulated by IL-15, via the nuclear factor κB signaling pathway, to promote cell survival in an autocrine manner. Both ectopic and IL-15-induced expression of PDGFRß improves NK cell survival in response to treatment with PDGF-D. Our results suggest that the PDGF-D-PDGFRß signaling pathway is a mechanism by which IL-15 selectively regulates the survival of human NK cells without modulating their effector functions.


Assuntos
Interleucina-15/metabolismo , Células Matadoras Naturais/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Linfocinas , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptor 2 Desencadeador da Citotoxicidade Natural , Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
9.
Proc Natl Acad Sci U S A ; 119(13): e2120336119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35320046

RESUMO

SignificanceTissue fibrotic diseases, for example of the liver and lung, represent a huge unmet medical need. In this study, using single-cell RNA sequencing, cytometry by time of flight (CyTOF), tissue imaging, and functional assays, we identify a complex vascular niche in Dupuytren's disease (DD), a common localized fibrotic condition of the palm, where early-disease-stage tissue can be accessed readily. We uncover a population of myofibroblast precursors within the pericyte compartment and demonstrate that the endothelium instructs the differentiation of functionally distinct stromal cells, thereby orchestrating discrete microenvironments in the fibrotic milieu. Together, these findings provide a basis for the concept of targeting blood vessel signaling to control the progression of human fibrosis.


Assuntos
Contratura de Dupuytren , Miofibroblastos , Contratura de Dupuytren/genética , Contratura de Dupuytren/patologia , Fibrose , Humanos , Miofibroblastos/patologia , Fenótipo , Células Estromais , Microambiente Tumoral
10.
J Infect Dis ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39449682

RESUMO

BACKGROUND: Children with severe malarial anemia (SMA) typically have low in-hospital mortality but have a high risk of post-discharge readmission or death. We hypothesized that the dysregulation of hematopoiesis, vascular growth factors, and endothelial function that occurs in SMA might affect risk of readmission or death. METHODS: Plasma was obtained from children 18 months to 12 years old with SMA (N=145) in Kampala, Uganda on admission, and outcomes were assessed over 12-month follow-up. Admission plasma levels of ten biomarkers of vascular growth, hematopoiesis, and endothelial function were compared to risk of readmission or death over 12-month follow-up. RESULTS: Over 12-month follow-up, 19 of 145 children with SMA were either readmitted or died: 15 children were readmitted (13 with malaria) and 4 children died. In multivariable analyses adjusted for age and sex, elevated plasma levels of platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF) on admission were independently associated with a decreased risk of all-cause readmission or death (adjusted hazard ratios [95% confidence intervals], 0.28 [0.16-0.51] and 0.19 [0.08-0.48], respectively) and a decreased risk of readmission due to severe malaria (0.27 [0.15, 0.51] and 0.16 [0.05, 0.47]) but not with risk of uncomplicated malaria (1.01 [0.53, 1.95] and 2.07 [0.93-4.64]). CONCLUSIONS: In children with severe malarial anemia, elevated plasma levels of PDGF-BB and VEGF, two factors that promote angiogenesis, are associated with a decreased risk of readmission or death in the year following admission, primarily driven by a decrease in the risk of recurrent severe malaria.

11.
Diabetologia ; 67(6): 1066-1078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630142

RESUMO

AIMS/HYPOTHESIS: Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS: We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS: We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION: This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.


Assuntos
Diferenciação Celular , Proliferação de Células , Imageamento Tridimensional , Pâncreas , Humanos , Pâncreas/embriologia , Pâncreas/citologia , Pâncreas/metabolismo , Diferenciação Celular/fisiologia , Feminino , Células-Tronco/citologia , Células-Tronco/metabolismo , Gravidez , Insulina/metabolismo
12.
BMC Genomics ; 25(1): 962, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407135

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent stem cells that are under investigation for use in clinical trials because they are capable of self-renewal and differentiating into different cell types under defined conditions. Nonetheless, the therapeutic effects of MSCs have been constrained by low engraftment rates, cell fusion, and cell survival. Various strategies have been explored to improve the therapeutic efficacy of MSCs, with platelet-derived growth factor (PDGF)-BB emerging as a promising candidate. To enhance our comprehension of the impact of PDGF-BB on the gene expression profile and chromosomal accessibility of MSCs, RNA-sequencing and analysis of chromatin accessibility profiles were conducted on three human primary MSCs in culture, both with and without stimulation by PDGF-BB. RESULTS: Integrative analysis of gene expression and chromatin accessibility demonstrated that PDGF-BB treatment modified the chromatin accessibility landscape, marking regions for activation or repression through the AP-1 family transcription factors TEAD, CEBP, and RUNX2. These changes in AP-1 transcription factor expression, in turn, led to cell proliferation and differentiation potential towards osteoblasts, adipocytes, or chondrocytes. The degree of MSC differentiation varies among cells isolated from different donors. The presence of an enrichment of exosome-related genes is also noted among all the differentially expressed genes. CONCLUSIONS: In conclusion, the observed changes in AP-1 transcription factor expression not only induced cellular proliferation and differentiation, but also revealed variations in the degree of MSC differentiation based on donor-specific differences. Moreover, the enrichment of exosome-related genes among differentially expressed genes suggests a potential significant role for PDGF-BB in facilitating intercellular communication.


Assuntos
Becaplermina , Diferenciação Celular , Cromatina , Células-Tronco Mesenquimais , Transcriptoma , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Humanos , Becaplermina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Cromatina/metabolismo , Cromatina/genética , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Proteínas Proto-Oncogênicas c-sis/farmacologia
13.
Curr Issues Mol Biol ; 46(9): 10651-10661, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39329983

RESUMO

Despite the use of screening programs, gastric cancer (GC) diagnosis may only be possible at an advanced stage. In this study, we examined the serum levels of C-C chemokine receptor type 5 (CCR5), C-C motif chemokine ligand 5 (CCL5), platelet-derived growth factor (PDGF), and EphrinA7 (EphA7) in patients with gastric carcinoma and healthy controls to investigate the significance and usability of these potential biomarkers in the early diagnosis of GC. The study enrolled 69 GC patients and 40 healthy individuals. CCR5, CCL5, PDGF-BB, and EphA7 levels, which have been identified in the carcinogenesis of many cancers, were measured in the blood samples using the ELISA method. CCR5, CCL5, PDGF-BB, and EphA7 were all correlated with GC diagnosis (CCR5, p < 0.001, r = -0.449; CCL5, p = 0.014, r = -0.234; PDGF-BB, p < 0.001, r = -0.700; EPHA7, p < 0.001, r = -0.617). The serum CCR5, EphA7, and especially the PDGF-BB levels of the patients diagnosed with GC were discovered to be significantly higher compared to the healthy controls. PDGF-BB had the highest positive and negative predictive values when evaluated in ROC analysis to determine its diagnostic significance (cut-off value: 59.8 ng/L; AUC: 0.92 (0.87-0.97)). As far as we know, this is the first study to investigate the potential connection between GC and these four biomarkers. The fact that serum CCR5, CCL5, EphA7, and especially PDGF-BB levels in the patient group were significantly higher compared to healthy controls indicates that they can be used with high accuracy in the early diagnosis of GC. In addition, the levels of CCR5, PDGF-BB, and EphA7 can be used as important indicators to predict the biological behavior and prognosis of GC.

14.
Biochem Biophys Res Commun ; 736: 150866, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39447276

RESUMO

This study explored the signaling interplay between the vitamin D receptor (VDR) and receptor tyrosine kinases (RTKs). Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)-BB promotes cell proliferation in normal and cancer cells. At the same time, the active form of vitamin D (1,25(OH)2-vitamin D3) inhibits proliferation in some cells. Although EGF receptors (EGFR) and PDGF receptors (PDGFR) activate similar downstream pathways, we found that they interact with VDR signaling in distinct ways. We confirmed that 1,25(OH)2-vitamin D3 induces CYP24A1 gene expression in U2OS, T98G, and U251 cells. We found this to be potentiated when combined with EGF. In contrast, PDGF-BB did not impact 1,25(OH)2-vitamin D3-induced CYP24A1 expression in U2OS cells. The increase in CYP24A1 expression due to the combined action of EGF and 1,25(OH)2-vitamin D3 was dependent on AKT and ERK1/2 activation. Another VDR-responsive gene, CYP27B1, was unaffected by the addition of EGF, suggesting that EGF may have gene-specific effects on VDR signaling. While PDGF-BB did not influence CYP24A1 expression, 1,25(OH)2-vitamin D3 significantly influenced PDGF-BB-induced receptor phosphorylation and cell proliferation. In summary, we found that EGF, but not PDGF-BB, influenced the expression of the VDR-dependent gene CYP24A1, while 1,25(OH)2-vitamin D3 had an inhibitory effect on PDGFR signaling and proliferation. These findings highlight unique crosstalk between 1,25(OH)2-vitamin D3 signaling and EGF or PDGF-BB.

15.
BMC Med ; 22(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166913

RESUMO

BACKGROUND: We aimed to determine whether and how the combination of acetazolamide and remote ischemic preconditioning (RIPC) reduced the incidence and severity of acute mountain sickness (AMS). METHODS: This is a prospective, randomized, open-label, blinded endpoint (PROBE) study involving 250 healthy volunteers. Participants were randomized (1:1:1:1:1) to following five groups: Ripc (RIPC twice daily, 6 days), Rapid-Ripc (RIPC four times daily, 3 days), Acetazolamide (twice daily, 2 days), Combined (Acetazolamide plus Rapid-Ripc), and Control group. After interventions, participants entered a normobaric hypoxic chamber (equivalent to 4000 m) and stayed for 6 h. The primary outcomes included the incidence and severity of AMS, and SpO2 after hypoxic exposure. Secondary outcomes included systolic and diastolic blood pressure, and heart rate after hypoxic exposure. The mechanisms of the combined regime were investigated through exploratory outcomes, including analysis of venous blood gas, complete blood count, human cytokine antibody array, ELISA validation for PDGF-AB, and detection of PDGF gene polymorphisms. RESULTS: The combination of acetazolamide and RIPC exhibited powerful efficacy in preventing AMS, reducing the incidence of AMS from 26.0 to 6.0% (Combined vs Control: RR 0.23, 95% CI 0.07-0.70, P = 0.006), without significantly increasing the incidence of adverse reactions. Combined group also showed the lowest AMS score (0.92 ± 1.10). Mechanistically, acetazolamide induced a mild metabolic acidosis (pH 7.30 ~ 7.31; HCO3- 18.1 ~ 20.8 mmol/L) and improved SpO2 (89 ~ 91%) following hypoxic exposure. Additionally, thirty differentially expressed proteins (DEPs) related to immune-inflammatory process were identified after hypoxia, among which PDGF-AB was involved. Further validation of PDGF-AB in all individuals showed that both acetazolamide and RIPC downregulated PDGF-AB before hypoxic exposure, suggesting a possible protective mechanism. Furthermore, genetic analyses demonstrated that individuals carrying the PDGFA rs2070958 C allele, rs9690350 G allele, or rs1800814 G allele did not display a decrease in PDGF-AB levels after interventions, and were associated with a higher risk of AMS. CONCLUSIONS: The combination of acetazolamide and RIPC exerts a powerful anti-hypoxic effect and represents an innovative and promising strategy for rapid ascent to high altitudes. Acetazolamide improves oxygen saturation. RIPC further aids acetazolamide, which synergistically regulates PDGF-AB, potentially involved in the pathogenesis of AMS. TRIAL REGISTRATION: ClinicalTrials.gov NCT05023941.


Assuntos
Doença da Altitude , Precondicionamento Isquêmico , Humanos , Doença da Altitude/prevenção & controle , Doença da Altitude/diagnóstico , Acetazolamida , Estudos Prospectivos , Doença Aguda , Hipóxia/prevenção & controle
16.
Biol Chem ; 405(3): 203-215, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37903646

RESUMO

Platelet-derived growth factor (PDGF)-induced changes in vascular smooth muscle cells (VSMCs) stimulate vascular remodeling, resulting in vascular diseases such as pulmonary arterial hypertension. VSMCs communicate with endothelial cells through extracellular vesicles (EVs) carrying cargos, including microRNAs. To understand the molecular mechanisms through which PDGF-stimulated pulmonary artery smooth muscle cells (PASMCs) interact with pulmonary artery endothelial cells (PAECs) under pathological conditions, we investigated the crosstalk between PASMCs and PAECs via extracellular vesicle miR-409-5p under PDGF stimulation. miR-409-5p expression was upregulated in PASMCs upon PDGF signaling, and it was released into EVs. The elevated expression of miR-409-5p was transported to PAECs and led to their impaired function, including reduced NO release, which consequentially resulted in enhanced PASMC proliferation. We propose that the positive regulatory loop of PASMC-extracellular vesicle miR-409-5p-PAEC is a potential mechanism underlying the proliferation of PASMCs under PDGF stimulation. Therefore, miR-409-5p may be a novel therapeutic target for the treatment of vascular diseases, including pulmonary arterial hypertension.


Assuntos
Vesículas Extracelulares , MicroRNAs , Hipertensão Arterial Pulmonar , Doenças Vasculares , Humanos , Artéria Pulmonar , Células Endoteliais , MicroRNAs/genética , Miócitos de Músculo Liso , Fator de Crescimento Derivado de Plaquetas
17.
Microvasc Res ; 151: 104609, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716411

RESUMO

OBJECTIVE: Vascular smooth muscle cell (VSMC) phenotypic switching is critical for normal vessel formation, vascular stability, and healthy brain aging. Phenotypic switching is regulated by mediators including platelet derived growth factor (PDGF)-BB, insulin-like growth factor (IGF-1), as well as transforming growth factor-ß (TGF-ß) and endothelin-1 (ET-1), but much about the role of these factors in microvascular VSMCs remains unclear. METHODS: We used primary rat microvascular VSMCs to explore PDGF-BB- and IGF-1-induced phenotypic switching. RESULTS: PDGF-BB induced an early proliferative response, followed by formation of polarized leader cells and rapid, directionally coordinated migration. In contrast, IGF-1 induced cell hypertrophy, and only a small degree of migration by unpolarized cells. TGF-ß and ET-1 selectively inhibit PDGF-BB-induced VSMC migration primarily by repressing migratory polarization and formation of leader cells. Contractile genes were downregulated by both growth factors, while other genes were differentially regulated by PDGF-BB and IGF-1. CONCLUSIONS: These studies indicate that PDGF-BB and IGF-1 stimulate different types of microvascular VSMC phenotypic switching characterized by different modes of cell migration. Our studies are consistent with a chronic vasoprotective role for IGF-1 in VSMCs in the microvasculature while PDGF is more involved in VSMC proliferation and migration in response to acute activities such as neovascularization. Better understanding of the nuances of the phenotypic switching induced by these growth factors is important for our understanding of a variety of microvascular diseases.


Assuntos
Fator de Crescimento Insulin-Like I , Ratos , Animais , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Miócitos de Músculo Liso , Proliferação de Células , Movimento Celular , Células Cultivadas
18.
Cancer Cell Int ; 24(1): 5, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169376

RESUMO

The tumor microenvironment and cancer-associated fibroblasts (CAFs) play crucial roles in tumor development, and their metabolic coupling remains unclear. Clinical data showed a positive correlation between PDGF-BB, CAFs, and glycolysis in the tumor microenvironment of oral tongue squamous cell carcinoma patients. In vitro, CAFs are derived from hOMF cells treated with PDGF-BB, which induces their formation and promotes aerobic glycolysis. Mitophagy increased the PDGF-BB-induced formation of CAF phenotypes and aerobic glycolysis, while autophagy inhibition blocked PDGF-BB-induced effects. Downregulation of miR-26a-5p was observed in CAFs; upregulation of miR-26a-5p inhibited the expression of mitophagy-related proteins ULKI, Parkin, PINK1, and LC3 and aerobic glycolysis in PDGF-BB-induced CAFs. PDGF-BB-induced CAFs promoted tumor cell proliferation, invasion, metastasis, NF-κB signaling pathway activation, and PDGF-BB secretion. Thus, PDGF-BB is associated with lactate-induced CAF formation and glucose metabolism reprogramming. These findings indicate potential therapeutic targets in oral tongue squamous cell carcinoma.

19.
Cell Commun Signal ; 22(1): 184, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493137

RESUMO

BACKGROUND: Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFß are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However, the mechanisms driving contractile alterations downstream of PDGF and TGFß in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. METHODS: To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFß. Additional Analysis of publicly available data sets were performed on SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. Validation of in silico findings were performed with qPCR, immunoblots, and collagen gel contraction assays measure the effect of JQ1 on cytoskeleton associated genes, proteins and contractility in mechanically active cells. Likelihood ratio test and FDR adjusted p-values were used to determine significant differentially expressed genes. Student ttest were used to calculate statistical significance of qPCR and contractility analyses. RESULTS: Comparing PDGF and TGFß stimulated SMC and fibroblasts identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. Additional in silico analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition with JQ1. In vitro validation demonstrated JQ1 was also able to attenuate TGFß and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. CONCLUSIONS: These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Citoesqueleto/metabolismo , Miócitos de Músculo Liso , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas
20.
J Biochem Mol Toxicol ; 38(2): e23646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345168

RESUMO

Circular RNAs (circRNAs) exhibit essential regulation in the malignant development of hepatocellular carcinoma (HCC). This study aims to investigate the physiological mechanisms of circ_0029343 encoded by scavenger receptor class B member 1 (SCARB1) involved in the growth and metastasis of HCC. Differentially expressed mRNAs in HCC were obtained, followed by the prediction of target genes of differentially expressed miRNAs and gene ontology and kyoto encyclopedia of genes and genomes analysis on the differentially expressed mRNAs. Moreover, the regulatory relationship between circRNAs encoded by SCARB1 and differentially expressed miRNAs was predicted. In vitro cell experiments were performed to verify the effects of circ_0029343, miR-486-5p, and SRSF3 on the malignant features of HCC cells using the gain- or loss-of-function experiments. Finally, the effects of circ_0029343 on the growth and metastasis of HCC cells in xenograft mouse models were also explored. It was found that miR-486-5p might interact with seven circRNAs encoded by SCARB1, and its possible downstream target gene was SRSF3. Moreover, SRSF3 was associated with the splicing of various RNA. circ_0029343 could sponge miR-486-5p to up-regulate SRSF3 and activate PDGF-PDGFRB (platelet-derived growth factor and its receptor, receptor beta) signaling pathway by inducing p73 splicing, thus promoting the proliferation, migration, and invasion and inhibiting apoptosis of HCC cells. In vivo, animal experiments further confirmed that overexpression of circ_0029343 could promote the growth and metastasis of HCC cells in nude mice. circ_0029343 encoded by SCARB1 may induce p73 splicing and activate the PDGF-PDGFRB signaling pathway through the miR-486-5p/SRSF3 axis, thus promoting the growth and metastasis of HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Nus , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA