Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2404118, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165199

RESUMO

Significantly reducing the iridium content in oxygen evolution reaction (OER) catalysts while maintaining high electrocatalytic activity and stability is a key priority in the development of large-scale proton exchange membrane (PEM) electrolyzers. In practical catalysts, this is usually achieved by depositing thin layers of iridium oxide on a dimensionally stable metal oxide support material that reduces the volumetric packing density of iridium in the electrode assembly. By comparing two support materials with different structure types, it is shown that the chemical nature of the metal oxide support can have a strong influence on the crystallization of the iridium oxide phase and the direction of crystal growth. Epitaxial growth of crystalline IrO2 is achieved on the isostructural support material SnO2, both of which have a rutile structure with very similar lattice constants. Crystallization of amorphous IrOx on an SnO2 substrate results in interconnected, ultrasmall IrO2 crystallites that grow along the surface and are firmly anchored to the substrate. Thereby, the IrO2 phase enables excellent conductivity and remarkable stability of the catalyst at higher overpotentials and current densities at a very low Ir content of only 14 at%. The chemical epitaxy described here opens new horizons for the optimization of conductivity, activity and stability of electrocatalysts and the development of other epitaxial materials systems.

2.
Angew Chem Int Ed Engl ; : e202412080, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234632

RESUMO

Proton exchange membrane (PEM) electrolysis holds great promise for green hydrogen production, but suffering from high loading of platinum-group metals (PGM) for large-scale deployment. Anchoring PGM-based materials on supports can not only improve the atomic utilization of active sites but also enhance the intrinsic activity. However, in practical PEM electrolysis, it is still challenging to mediate hydrogen adsorption/desorption pathways with high coverage of hydrogen intermediates over catalyst surface. Here, operando generated stable palladium (Pd) hydride nanoclusters anchored on tungsten carbide (WCx) supports were constructed for hydrogen evolution in PEM electrolysis. Under PEM operando conditions, hydrogen intercalation induces formation of Pd hydrides (PdHx) featuring weakened hydrogen binding energy (HBE), thus triggering reverse hydrogen spillover from WCx (strong HBE) supports to PdHx sites, which have been evidenced by operando characterizations, electrochemical results and theoretical studies. This PdHx-WCx material can be directly utilized as cathode electrocatalysts in PEM electrolysis with ultralow Pd loading of 0.022 mg cm-2, delivering the current density of 1 A cm-2 at the cell voltage of ~1.66 V and continuously running for 200 hours without obvious degradation. This innovative strategy via tuning the operando characteristics to mediate reverse hydrogen spillover provide new insights for designing high-performance supported PGM-based electrocatalysts.

3.
Environ Sci Technol ; 56(18): 12828-12837, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36036930

RESUMO

As the prices of photovoltaics and wind turbines continue to decrease, more renewable electricity-generating capacity is installed globally. While this is considered an integral part of a sustainable energy future by many nations, it also poses a significant strain on current electricity grids due to the inherent output variability of renewable electricity. This work addresses the challenge of renewable electricity surplus (RES) utilization with target-scaling of centralized power-to-gas (PtG) hydrogen production. Using the Republic of Korea as a case study, due to its ambitious plan of 2030 green hydrogen production capacity of 0.97 million tons year-1, we combine predictions of future, season-averaged RES with a detailed conceptual process simulation for green H2 production via polymer electrolyte membrane (PEM) electrolysis combined with a desalination plant in six distinct scale cases (0.5-8.5 GW). It is demonstrated that at scales of 0.5 to 1.75 GW the RES is optimally utilized, and PtG hydrogen can therefore outperform conventional hydrogen production both environmentally (650-2210 Mton CO2 not emitted per year) and economically (16-30% levelized cost reduction). Beyond these scales, the PtG benefits sharply drop, and thus it is answered how much of the planned green hydrogen target can realistically be "green" if produced domestically on an industrial scale.


Assuntos
Dióxido de Carbono , Hidrogênio , Eletricidade , Polímeros , Energia Renovável
4.
Adv Mater ; 35(26): e2300091, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967600

RESUMO

Proton-exchange-membrane water electrolysis (PEMWE) requires an efficient and durable bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, Ir-based electrocatalyst is designed using the high entropy alloy (HEA) platform of ZnNiCoIrX with two elements (X: Fe and Mn). A facile dealloying in the vacuum system enables the construction of a nanoporous structure with high crystallinity using Zn as a sacrificial element. Especially, Mn incorporation into HEAs tailors the electronic structure of the Ir site, resulting in the d-band center being far away from the Fermi level. Downshifting of the d-band center weakens the adsorption energy with reaction intermediates, which is beneficial for catalytic reactions. Despite low Ir content, ZnNiCoIrMn delivers only 50 mV overpotential for HER at -50 mA cm-2 and 237 mV overpotential for the OER at 10 mA cm-2 . Furthermore, ZnNiCoIrMn shows almost constant voltage for the HER and OER for 100 h and a high stability number of 3.4 × 105 nhydrogen nIr -1 and 2.4 × 105 noxygen nIr -1 , demonstrating the exceptional durability of the HEA platform. The compositional engineering of ZnNiCoIrMn limits the diffusion of elements by high entropy effects and simultaneously tailors the electronic structure of active Ir sites, resulting in the modified cohesive and adsorption energies, all of which can suppress the dissolution of elements.

5.
ACS Appl Mater Interfaces ; 15(29): 34750-34763, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459180

RESUMO

Cost reduction and fast scale-up of electrolyzer technologies are essential for decarbonizing several crucial branches of industry. For polymer electrolyte water electrolysis, this requires a dramatic reduction of the expensive and scarce iridium-based catalyst, making its efficient utilization a key factor. The interfacial properties between the porous transport layer (PTL) and the catalyst layer (CL) are crucial for optimal catalyst utilization. Therefore, it is essential to understand the relationship between this interface and electrochemical performance. In this study, we fabricated a matrix of two-dimensional interface layers with a well-known model structure, integrating them as an additional layer between the PTL and the CL. By characterizing the performance and conducting an in-depth analysis of the overpotentials, we were able to estimate the catalyst utilization at different current densities, correlating them to the geometric properties of the model PTLs. We found that large areas of the CL become inactive at increasing current density either due to dry-out, oxygen saturation (under the PTL), or the high resistance of the CL away from the pore edges. We experimentally estimated the water penetration in the CL under the PTL to be ≈20 µm. Experimental results were corroborated using a 3D-multiphysics model to calculate the current distribution in the CL and estimate the impact of membrane dry-out. Finally, we observed a strong pressure dependency on performance and high-frequency resistance, which indicates that with the employed model PTLs, a significant gas phase accumulates in the CL under the lands, hindering the distribution of liquid water. The findings of this work can be extrapolated to improve and engineer PTLs with advanced interface properties, helping to reach the required target goals in cost and iridium loadings.

6.
ACS Appl Mater Interfaces ; 14(24): 28114-28122, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671410

RESUMO

Pure oxygen is vital in medical treatment, first aid, and chemical synthesis. Hypoxia can cause severe damage to the organ systems such as respiratory, digestive, and nervous systems and even directly cause death. Notably, the severe Coronavirus disease 2019 (COVID-19) pandemic has exacerbated the shortage of medical oxygen in the world. Hence, a safe, economical, and portable oxygen supply device is urgently needed. Here, we have successfully prepared a device with air-breathing electrochemical extraction of pure oxygen (ABEEPO) with light weight and high energy efficiency. By renovating the structure of the electrolytic cell, the components bipolar plate and end plate are replaced with a plastic membrane, and the component current collector is replaced with a highly conductive graphene composite membrane electrode. Due to the use of the plastic membrane and graphene composite membrane electrode, the weight of the electrolytic cell is reduced from 1319.4 to 1.6 g, and the flexibility of the electrolytic cell is successfully realized. Through optimizing anode catalysts, working area, and operating voltage, a high flow rate per mass (234 mL h-1 g-1) was achieved at a voltage of 1.2 V. The device exhibits high stability in 2 h. The new portable oxygen production device would be effective for hypoxia treatment.


Assuntos
COVID-19 , Grafite , Humanos , Hipóxia , Oxigênio/química , Plásticos
7.
ChemSusChem ; 15(2): e202102180, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34806833

RESUMO

The application of a polymer electrolyte membrane (PEM) electrolytic cell for continuous conversion of nitrate, one of the contaminants in water, to ammonia at the cathode was explored in the present work. Among carbon-supported metal (Cu, Ru, Rh and Pd) electrocatalysts, the Ru-based catalyst showed the best performance. By suppressing the competing hydrogen evolution reaction at the cathode, it was possible to reach 94 % faradaic efficiency for nitrate reduction towards ammonium. It was important to match the rate of the anodic reaction with the cathodic reaction to achieve high faradaic efficiency. By recirculating the effluent stream, 93 % nitrate conversion was achieved in 8 h of constant current electrolysis at 10 mA cm-2 current density. The presented approach offers a promising path towards precious NH3 production from nitrate-containing water that needs purification or can be obtained after capture of gaseous NOx pollutants into water, leading to waste-to-value conversion.


Assuntos
Amônia , Nitratos , Eletrólitos , Polímeros , Água
8.
ChemSusChem ; 14(6): 1534-1544, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33378594

RESUMO

Electrolysis-assisted nitrate (NO3 - ) reduction is a promising approach for its conversion to harmless N2 from waste, ground, and drinking water due to the possible process simplicity by in-situ generation of H2 /H/H+ by water electrolysis and to the flexibility given by tunable redox potential of electrodes. This work explores the use of a polymer electrolyte membrane (PEM) electrochemical cell for electrolysis-assisted nitrate reduction using SnO2 -supported metals as the active cathode catalysts. Effects of operation modes and catalyst materials on nitrate conversion and product selectivity were studied. The major challenge of product selectivity, namely complete suppression of nitrite (NO2 - ) and ammonium (NH4 + ) ion formation, was tackled by combining with simultaneous photocatalytic oxidation to drive the overall reaction towards N2 formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA