Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 944
Filtrar
1.
J Virol ; : e0132224, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254313

RESUMO

The phosphatidyl-inositol 3-kinase/serine-threonine kinase (PI3K/ AKT) signaling pathway constitutes a classical phosphorylation cascade that integrates tyrosine, lipid, and serine acid-threonine phosphorylation, affecting cell function. The pathway is vulnerable to viral infection. Newcastle disease virus (NDV) poses a significant threat to the global poultry industry; however, its mechanism of early viral cell invasion and pathogenesis remain unclear. Previous in vivo and in vitro studies have shown that NDV infection activates PI3K/AKT signaling; however, it remains unclear whether NDV establishes infection through endocytosis regulated by this pathway. This study aimed to examine whether different genotypes of NDV strains could activate the PI3K/AKT signaling pathway within 2 h of in vitro infection. This activation, which relies on PI3K phosphorylation, remains unaffected by the phosphorylation-phosphatase and tensin homolog/phosphatase and tensin homolog (p-PTEN/PTEN) signaling pathway. Moreover, inhibition of PI3K activity impedes NDV replication. Additionally, interfering with the PI3K regulatory subunit p85 has no significant effect on NDV replication. Conversely, the tyrosine kinase activity upstream of PI3K can influence AKT activation and viral replication, particularly through vascular endothelial growth factor receptor 2 (VEGFR2). Additionally, NDV F protein primarily mediates PI3K and AKT phosphorylation to activate the PI3K/AKT signaling pathway. NDV F and VEGFR2 proteins, along with the PI3K p85α subunit, interact and co-localize at the cell membrane. NDV-induced PI3K/AKT signaling pathway activation impacts clathrin-mediated endocytosis, with VEGFR2 playing a pivotal role. In conclusion, this study shows that NDV infection is established early through F protein binding to VEGFR2, activating the PI3K/AKT signaling pathway and inducing clathrin-mediated endocytosis, supporting infection prevention and control measures. IMPORTANCE: Newcastle disease virus (NDV) is a threat to the global poultry industry; however, the mechanisms of NDV infection remain unclear. NDV affects the phosphatidyl-inositol 3-kinase/serine-threonine kinase (PI3K/ AKT) signaling pathway, requiring endocytosis for successful infection. Based on previous studies, we identified a close correlation between NDV infection and replication and the PI3K/AKT signaling pathway activity. This study examined the molecular mechanisms through which NDV activates the PI3K/AKT signaling pathway to regulate endocytosis and facilitate infection. This study showed that early-stage in vitro NDV infection activated the PI3K/AKT signaling pathway, enhancing clathrin-mediated endocytosis, crucial for infection onset. Notably, this process involves the interaction between NDV F protein and the vascular endothelial growth factor receptor 2 tyrosine kinase, leading to the subsequent binding and phosphorylation of the PI3K p85α regulatory subunit. This activation primes PI3K, initiating a cascade that promotes clathrin-mediated endocytosis. Our findings elucidate how NDV capitalizes on the PI3K/AKT signaling pathway to establish infection through endocytosis.

2.
Stem Cells ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167061

RESUMO

BACKGROUND: This study aims to address challenges in dental pulp regeneration therapy. The heterogeneity of DPSCs poses challenges, especially in stem cell transplantation for clinical use, particularly when sourced from donors of different ages and conditions. METHODS: Pseudotime analysis was employed to analyze single-cell sequencing data, and immunohistochemical studies were conducted to investigate the expression of fibronectin 1 (FN1). We performed in vitro sorting of PDGFRß+ DPSCs using flow cytometry. A series of functional assays, including cell proliferation, scratch, and tube formation assays, were performed to experimentally validate the vasculogenic capabilities of the identified PDGFRß+ DPSC subset. Furthermore, gene-edited mouse models were utilized to demonstrate the importance of PDGFRß+ DPSCs. Transcriptomic sequencing was conducted to compare the differences between PDGFRß+ DPSCs and P1-DPSCs. RESULTS: Single-cell sequencing analysis unveiled a distinct subset, PDGFRß+ DPSCs, characterized by significantly elevated FN1 expression during dental pulp development. Subsequent cell experiments demonstrated that this subset possesses remarkable abilities to promote HUVEC proliferation, migration, and tube formation. Gene-edited mouse models confirmed the vital role of PDGFRß+ DPSCs in dental pulp development. Transcriptomic sequencing and in vitro experiments demonstrated that the PDGFR/PI3K/AKT signaling pathway is a crucial factor mediating the proliferation rate and pro-angiogenic properties of PDGFRß+ DPSCs. CONCLUSION: We defined a new subset, PDGFRß+ DPSCs, characterized by strong proliferative activity and pro-angiogenic capabilities, demonstrating significant clinical translational potential.

3.
Hum Genomics ; 18(1): 58, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840185

RESUMO

BACKGROUND: Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with recurrent HCC to identify differentially expressed genes (DEGs), the involved pathways, biological functions, and potential gene signatures of recurrent HCC post-transplant using deep machine learning (ML) methodology. MATERIALS AND METHODS: We analyzed the transcriptomic profiles of primary and recurrent tumor samples from 7 pairs of patients who underwent LT. Following differential gene expression analysis, we performed pathway enrichment, gene ontology (GO) analyses and protein-protein interactions (PPIs) with top 10 hub gene networks. We also predicted the landscape of infiltrating immune cells using Cibersortx. We next develop pathway and GO term-based deep learning models leveraging primary tissue gene expression data from The Cancer Genome Atlas (TCGA) to identify gene signatures in recurrent HCC. RESULTS: The PI3K/Akt signaling pathway and cytokine-mediated signaling pathway were particularly activated in HCC recurrence. The recurrent tumors exhibited upregulation of an immune-escape related gene, CD274, in the top 10 hub gene analysis. Significantly higher infiltration of monocytes and lower M1 macrophages were found in recurrent HCC tumors. Our deep learning approach identified a 20-gene signature in recurrent HCC. Amongst the 20 genes, through multiple analysis, IL6 was found to be significantly associated with HCC recurrence. CONCLUSION: Our deep learning approach identified PI3K/Akt signaling as potentially regulating cytokine-mediated functions and the expression of immune escape genes, leading to alterations in the pattern of immune cell infiltration. In conclusion, IL6 was identified to play an important role in HCC recurrence.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transplante de Fígado , Recidiva Local de Neoplasia , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Transplante de Fígado/efeitos adversos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Regulação Neoplásica da Expressão Gênica/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Masculino , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade
4.
Exp Cell Res ; 439(1): 114060, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719173

RESUMO

BACKGROUND: Tie1 orphan receptor has become a focus of research, Tie1 can form a polymer with Tie2, regulate the Ang/Tie2 pathway and play a vital role in pathological angiogenesis and tumor progression, the function of Tie1 has remained uncertain in the progression of cervical cancer (CC). Here, we investigated the functional influences of Tie1 overexpress on CC in vitro and in vivo. METHODS: We used Immunohistochemistry (IHC) analysis to detect the relative expression of Tie1 in CC, and we analyzed its connection with the overall survival (OS) and progression free survival (PFS)of CC patients. To prove the role of Tie1 in cell proliferation and metastatic, Tie1 expression in CC cell lines was upregulated by lentivirus. RESULTS: The high expression of Tie1 in tumor cells of cervical cancer tissues is significantly correlated with FIGO stage, differentiated tumors, tumors with diameters, deep stromal invasion. We found that cell progression was promoted in Tie1-overexpress CC cell lines in vivo and in vitro. Tie1 potentially exerts a commanding influence on the expression of markers associated with epithelial-mesenchymal transition (EMT) and the PI3K/AKT signaling pathway. CONCLUSIONS: Our research indicates that Tie1 is highly connected to CC progression as it may play a role in the EMT process through the PI3K/AKT signaling pathway.


Assuntos
Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptor de TIE-1 , Transdução de Sinais , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
5.
Cell Mol Life Sci ; 81(1): 133, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472560

RESUMO

Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase ß1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/farmacologia , ATPase Trocadora de Sódio-Potássio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
6.
Genomics ; 116(5): 110914, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128817

RESUMO

Increasing evidence suggests that tissue inhibitor of metalloproteinase 1 (TIMP1) played a pivotal role in immune regulation. Our study focused on examining the expression and function of TIMP1 in humans, particularly in its regulation of tumor-associated macrophages (TAMs) in papillary thyroid carcinoma (PTC). We observed an upregulation of TIMP1 in 16 different types of malignancies, including thyroid cancer. TIMP1 shaped the inflammatory TME in PTC. Inhibiting the expression of TIMP1 has been demonstrated to reduce the malignant biological traits of PTC cells. Furthermore, reducing TIMP1 expression impeded M2 macrophage polarization as well as facilitated M1 macrophage polarization in PTC. ELISA results demonstrated that downregulated TIMP1 expression correlated with decreased levels of IL10 and TGF-ß in cell supernatants. Furthermore, the supernatant from polarized macrophages in the TIMP1-silenced group inhibited the motility of wild-type PTC cells. Therefore, TIMP1 may enhance the progression of PTC by stimulating the PI3K/AKT pathway via the secretion of IL10 and TGF-ß, consequently influencing M2-type polarization in TAMs.

7.
Curr Issues Mol Biol ; 46(6): 5561-5581, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38921004

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino (GP), a plant with homology of medicine and food, as a traditional Chinese medicine, possesses promising biological activities in the prevention and treatment of type 2 diabetes mellitus (T2DM). However, the material basis and the mechanism of action of GP in the treatment of T2DM have not been fully elucidated. This study aimed to clarify the active components, potential targets and signaling pathways of GP in treating T2DM. The chemical ingredients of GP were collected by combining UPLC-HRMS analysis and literature research. Network pharmacology revealed that GP had 32 components and 326 potential targets in treating T2DM. The results showed that GP affected T2DM by mediating the insulin resistance signaling pathway, PI3K/Akt signaling pathway and FoxO1 signaling pathway, which had a close relationship with T2DM. Molecular docking results showed that STAT3, PIK3CA, AKT1, EGFR, VEGFA and INSR had high affinity with the active compounds of GP. In vitro, GP extracts obviously increased the glucose uptake and glucose consumption in IR-HepG2 cells. GP extracts increased the levels of PI3K, p-AKT, p-GSK3ß and p-FoxO1 and decreased the expression of p-IRS1, p-GS, PEPCK and G6Pase, which indicated that GP could promote glycogen synthesis and inhibit gluconeogenesis by regulating the IRS1/PI3K/Akt signaling pathway. The results demonstrated that GP could improve insulin resistance by promoting glucose uptake and glycogen synthesis and inhibiting gluconeogenesis through regulating the IRS1/PI3K/Akt signaling pathway, which might be a potential alternative therapy for T2DM.

8.
Biochem Biophys Res Commun ; 728: 150262, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-38959530

RESUMO

BACKGROUND AND OBJECTIVE: Colorectal cancer (CRC) is one of the most common malignancies in China. At present, there is a problem that the CRC treatment drugs SHP099, L-OHP and 5-FU are insensitive to tumor cells. Combination medication is an important means to solve the insensitivity of medication alone. The purpose of this project was to explore the effect and molecular mechanism of SHP099 combination on the malignant biological behavior of L-OHP/5-FU resistant strains of CRC. METHODS: HT29 and SW480 cells were cultured in media supplemented with L-OHP or 5-FU to establish drug-resistant strains. HT29 and SW480 drug-resistant cells were subcutaneously injected into the ventral nerves of nude mice at a dose of 5 × 106 to establish CRC drug-resistant animal models. CCK-8, Western blot, flow cytometry, Transwell and kit detection were used to detect the regulatory mechanism of energy metabolism reprogramming in drug-resistant CRC cells. RESULTS: Compared with nonresistant strains, L-OHP/5-FU-resistant strains exhibited greater metabolic reprogramming. Functionally, SHP099 can restrain the metabolic reprogramming of L-OHP/5-FU-resistant strains and subsequently restrain the proliferation, colony formation, migration and spheroid formation of L-OHP/5-FU-resistant strains. Downstream mechanistic studies have shown that SHP099 interferes with the metabolic reprogramming of L-OHP/5-FU drug-resistant strains by suppressing the PI3K/AKT pathway, thereby restraining the malignant biological behavior of L-OHP/5-FU drug-resistant strains and alleviating CRC. CONCLUSION: The combination of SHP099 can restrain the malignant biological behavior of L-OHP/5-FU-resistant CRC cells and alleviate the progression of CRC by interfering with the reprogramming of energy metabolism. This study explored the effect of SHP099 combination on dual-resistant CRC cells for the first time, and provided a new therapeutic idea for solving the problem of SHP099 insensitivity to CRC cells.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Reprogramação Metabólica , Animais , Humanos , Camundongos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Células HT29 , Reprogramação Metabólica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biochem Biophys Res Commun ; 734: 150589, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39245028

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a challenging condition to treat with myocardial fibrosis being a pivotal pathological component. Previous studies have suggested a role for inducible nitric oxide synthase (iNOS) in the progression of this condition, but the precise mechanisms remain unclear. This study aimed to investigate the role of iNOS in HFpEF-related myocardial fibrosis and identify potential therapeutic targets. METHODS: A 'two-hit' mouse model of HFpEF was established, and echocardiography, histopathology and biochemical analyses were performed. In vitro experiments were conducted in mouse cardiac fibroblasts, with iNOS overexpression and application of iNOS or phosphatidylinositol 3 kinase (PI3K) inhibitors. The iNOS-S-nitrosylated phosphatase and TENsin homolog (SNO-PTEN)-phosphorylated-protein kinase B (p-AKT) pathway was investigated, along with the effects on fibrotic markers and cell proliferation and migration. RESULTS: HFpEF mice exhibited significant cardiac dysfunction and fibrosis, with increased expression of iNOS, SNO-PTEN, and p-AKT, indicative of the activation of the iNOS-SNO-PTEN-p-AKT pathway. iNOS overexpression in mouse cardiac fibroblasts led to increased SNO-PTEN, decreased PTEN, activated phosphorylated PI3K (p-PI3K) and p-AKT, and enhanced cell proliferation and migration, as well as increased collagen I and III expression. The use of an iNOS inhibitor (L-NIL) or a PI3K inhibitor (LY294002) partially reversed these changes. CONCLUSION: Our findings suggest that the iNOS-SNO-PTEN-p-AKT pathway may play a crucial role in HFpEF-related myocardial fibrosis, with iNOS and PI3K inhibitors offering potential therapeutic benefits. These insights may pave the way for the development of effective drug therapies for HFpEF.

10.
Biochem Biophys Res Commun ; 726: 150264, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38905784

RESUMO

Non-alcoholic fatty liver disease (NAFLD) stands as the most prevalent hepatic disorder, with bariatric surgery emerging as the most effective intervention for NAFLD remission. Sleeve gastrectomy (SG) has notably ascended as the predominant procedure due to its comparative simplicity and consistent surgical outcomes. Nonetheless, the underlying mechanisms remain unclear. In this study, we probed the therapeutic potential of SG for NAFLD induced by a high-fat diet (HFD) in mice, with a focus on its impact on liver lipid accumulation, macrophage polarization, and the role of the histone methyltransferase Setdb2. SG prompted significant weight loss, diminished liver size and liver-to-body weight ratio, and enhanced liver function, evidenced by reduced serum levels of triglycerides (TG), total cholesterol (T-CHO), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Histological examination confirmed a reduction in liver lipid accumulation. Additionally, flow cytometry unveiled an increased proportion of M2 macrophages and a decrease in Setdb2 expression was shown in the SG group, suggesting an association between Setdb2 levels and postsurgical macrophage polarization. Furthermore, the conditional knockout of Setdb2 in mice further mitigated HFD-induced steatosis and promoted the M2 macrophage phenotype. Mechanistically, Setdb2 knockout in bone marrow-derived macrophages (BMDMs) favored M2 polarization, with RNA sequencing and western blotting analyses corroborating the upregulation of the PI3K/Akt signaling pathway. The effects of Setdb2 on macrophage activation were nullified by the PI3K inhibitor LY294002, suggesting that Setdb2 facilitates alternative macrophage activation through the PI3K/Akt signaling pathway. These comprehensive findings underscore the potential of SG as a therapeutic intervention for NAFLD by regulating the critical function of Setdb2 in macrophage polarization and activation, thereby offering novel insights into NAFLD pathogenesis and therapeutic targets.


Assuntos
Regulação para Baixo , Gastrectomia , Histona-Lisina N-Metiltransferase , Ativação de Macrófagos , Macrófagos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Masculino , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos
11.
Biol Reprod ; 111(3): 655-666, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38938081

RESUMO

Ovarian theca cells produce testosterone, which acts as a vital precursor substance for synthesizing estrogens during follicular development. Nerve growth factor (NGF) has been shown to participate in reproductive physiology, specifically to follicular development and ovulation. There is currently no available data on the impact of NGF on testosterone synthesis in porcine theca cells. Furthermore, m6A modification is the most common internal modification in eukaryotic mRNAs that are closely associated with female gametogenesis, follicle development, ovulation, and other related processes. It is also uncertain whether the three main enzymes associated with m6A, such as Writers, Erasers, and Readers, play a role in this process. The present study, with an in vitro culture model, investigated the effect of NGF on testosterone synthesis in porcine theca cells and the role of Writers-METTL14 in this process. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells. This study will help to further elucidate the mechanisms by which NGF regulates follicular development and provide new therapeutic targets for ovary-related diseases in female animals. Summary Sentence  The present study investigated the effect of NGF on testosterone synthesis in porcine theca cells. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells.


Assuntos
Fator de Crescimento Neural , Testosterona , Células Tecais , Animais , Células Tecais/metabolismo , Células Tecais/efeitos dos fármacos , Suínos , Feminino , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Testosterona/farmacologia , Testosterona/biossíntese , Testosterona/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Toxicol Appl Pharmacol ; 490: 117036, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009138

RESUMO

Catechin is a kind of flavonoids, mainly derived from the plant Camellia sinensis. It has a strong antioxidant effect, and it also has significant therapeutic effects on anti-cancer, anti-diabetes, and anti-infection. This study was intended to look at how catechin affected the malignant biological activity of gastric cancer cells. We used databases to predict the targets of catechin and the pathogenic targets of gastric cancer. Venn diagram was used to find the intersection genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on intersection genes. Using the STRING database, the Protein-Protein Interaction (PPI) network was built. The top 8 genes were screened by Cytoscape 3.9.1, then their binding was verified by molecular docking. The proliferation ability, cell cycle, apoptosis and migration of gastric cancer cells were detected, as well as the protein expression levels of PI3K, p-AKT, and AKT and the mRNA expression levels of AKT1, VEGFA, EGFR, HRAS, and HSP90AA1 in gastric cancer cells. Our research revealed that different concentrations of catechin could effectively inhibit the proliferation and migration of gastric cancer cells, regulate the cell cycle, and promote the death of these cells, and it's possible that the PI3K/Akt pathway was crucial in mediating this impact. Moreover, adding the PI3K/Akt pathway agonist significantly reduced the promoting effect of catechin on the apoptosis of gastric cancer cells. This study suggested that catechin was a potential drug for the treatment of gastric cancer.


Assuntos
Apoptose , Catequina , Movimento Celular , Proliferação de Células , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Catequina/farmacologia , Catequina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Mapas de Interação de Proteínas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo
13.
Neurochem Res ; 49(10): 2854-2870, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39023805

RESUMO

This study aimed to assess the impact of conditioned medium from epidermal neural crest stem cells (EPI-NCSCs-CM) on functional recovery following spinal cord injury (SCI), while also exploring the involvement of the PI3K-AKT signaling pathway in regulating neuronal apoptosis. EPI-NCSCs were isolated from 10-day-old Sprague-Dawley rats and cultured for 48 h to obtain EPI-NCSC-CM. SHSY-5Y cells were subjected with H2O2 treatment to induce apoptosis. Cell viability and survival rates were evaluated using the CCK-8 assay and calcein-AM/PI staining. SCI contusion model was established in adult Sprague-Dawley rats to assess functional recovery, utilizing the Basso, Beattie and Bresnahan (BBB) scoring system, inclined test, and footprint observation. Neurological restoration after SCI was analyzed through electrophysiological recordings. Histological analysis included hematoxylin and eosin (H&E) staining and Nissl staining to evaluate tissue organization. Apoptosis and oxidative stress levels were assessed using TUNEL staining and ROS detection methods. Additionally, western blotting was performed to examine the expression of apoptotic markers and proteins related to the PI3K/AKT signaling pathway. EPI-NCSC-CM significantly facilitated functional and histological recovery in SCI rats by inhibiting neuronal apoptosis through modulation of the PI3K/AKT pathway. Administration of EPI-NCSCs-CM alleviated H2O2-induced neurotoxicity in SHSY-5Y cells in vitro. The use of LY294002, a PI3K inhibitor, underscored the crucial role of the PI3K/AKT signaling pathway in regulating neuronal apoptosis. This study contributes to the ongoing exploration of molecular pathways involved in spinal cord injury (SCI) repair, focusing on the therapeutic potential of EPI-NCSC-CM. The research findings indicate that EPI-NCSC-CM exerts a neuroprotective effect by suppressing neuronal apoptosis through activation of the PI3K/AKT pathway in SCI rats. These results highlight the promising role of EPI-NCSC-CM as a potential treatment strategy for SCI, emphasizing the significance of the PI3K/AKT pathway in mediating its beneficial effects.


Assuntos
Apoptose , Células-Tronco Neurais , Neurônios , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Crista Neural/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Masculino
14.
Cell Biol Int ; 48(8): 1049-1068, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38812089

RESUMO

Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistência à Insulina/fisiologia , Animais , Insulina/metabolismo , Glucose/metabolismo , Tecido Adiposo/metabolismo
15.
J Fluoresc ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916633

RESUMO

AML is a highly aggressive malignant clonal disease of hematopoietic origin. Hesperidin as a polyphenol glycoside, Activates the apoptotic pathway and salinomycin as a k + selective ionophore. We examined how hesperidin and salinomycin induce pro-apoptotic effects in KG1a cells. Cells were divided into four groups; 1) control cells (CRTL), 2) cells treated with hesperidin 85 µM, 3) cells treated with 2 µM salinomycin, 4) cells treated with combination of salinomycin and hesperidin. The MTT assay was implemented to determine the IC50 of hesperidin and salinomycin in KG1a cell lines. Propidium iodide staining and flow cytometry were used to analyze the distribution of the cell cycle. The level of ROS was evaluated by fluorescent microscopy and spectrophotometry. Additionally, Akt, XIAP, Bad, and FOXO1 gene expression was analyzed by real-time PCR. Hesperidin/Salinomycin decreased the viability of KG1a leukemic cells more than Hesperidin and Salinomycin separately. Changes in the shape of apoptotic cells and rise in ROS levels were detected after Hesperidin/Salinomycin treatment. Our findings showed that following Hesperidin/Salinomycin treatment, the expression of PI3K/AKT signaling pathway related genes (AKT, PTEN and FOXO1), were in line with the destruction of KG-1a cells. Furthermore, XIAP and BAD mRNA were regulated to trigger apoptosis in cancer cells. The study discovered that hesperidin and salinomycin, could effectively hinder the PI3K/Akt signaling pathway in leukemia cancer cells. Also, the combination of hesperidin and salinomycin has the potential to be a treatment option for acute myeloid leukemia.

16.
J Biochem Mol Toxicol ; 38(9): e23834, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39230185

RESUMO

The involvement of let-7 in the occurrence and progression of various cancers has been well-documented. However, the precise molecular mechanisms underlying its impact on oral cancer development remain unclear. In this study, we aimed to elucidate the role of let-7 in oral cancer progression and investigate its underlying molecular mechanisms. The expression of let-7 and high mobility group A2 (HMGA2) mRNA was assessed using the quantitative reverse transcription polymerase chain reaction. Western blot analysis was employed to detect the expression of key proteins in the PI3K/AKT signaling pathway as well as HMGA2 protein levels. The targeting relationship between let-7 and HMGA2 was predicted through bioinformatics methods and confirmed via luciferase reporter gene assay. The effects of let-7 and HMGA2 on the functionality of oral cancer cells were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation assay, Transwell assay, wound healing assay, and Annexin V/PI apoptosis assay. Additionally, the impact of let-7 on the growth of oral cancer cells in vivo was investigated by inducing subcutaneous tumor formation in nude mice. Let-7 effectively suppresses the proliferation, migration, and invasion of oral cancer cells by inhibiting the activation of the PI3K/AKT signaling pathway. HMGA2, a downstream target gene of let-7, exhibits high expression in oral cancer. However, overexpression of HMGA2 diminishes the inhibitory effects induced by let-7 overexpression on the proliferation, migration, and invasion of oral cancer cells. The occurrence and progression of oral cancer cells are inhibited by Let-7 through the downregulation of HMGA2, potentially mediated by the inhibition of PI3K/AKT signaling pathway activation.


Assuntos
Movimento Celular , Proliferação de Células , Proteína HMGA2 , MicroRNAs , Neoplasias Bucais , Transdução de Sinais , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Proteína HMGA2/metabolismo , Proteína HMGA2/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
J Nanobiotechnology ; 22(1): 460, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090717

RESUMO

BACKGROUND: Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS: We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17ß-estradiol. CONCLUSIONS: This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.


Assuntos
Células da Granulosa , Nanopartículas , Oócitos , Poliestirenos , Transdução de Sinais , Animais , Feminino , Camundongos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Nanopartículas/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliestirenos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
BMC Nephrol ; 25(1): 192, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849771

RESUMO

OBJECTIVE: Contrast media (CM) is a commonly applied drug in medical examination and surgery. However, contrast-induced acute kidney injury (CIAKI) poses a severe threat to human life and health. Notably, the CUT-like homeobox 1 (CUX1) gene shows protective effects in a variety of cells. Therefore, the objective of this study was to provide a new target for the treatment of CIAKI through exploring the role and possible molecular mechanism of CUX1 in CIAKI. METHOD: Blood samples were collected from 20 patients with CIAKI and healthy volunteers. Human kidney 2 (HK-2) cells were incubated with 200 mg/mL iohexol for 6 h to establish a contrast-induced injury model of HK-2 cells. Subsequently, qRT-PCR was used to detect the relative mRNA expression of CUX1; CCK-8 and flow cytometry to assess the proliferation and apoptosis of HK-2 cells; the levels of IL(interleukin)-1ß, tumor necrosis factor alpha (TNF-α) and malondialdehyde (MDA) in cells and lactate dehydrogenase (LDH) activity in cell culture supernatant were detect; and western blot to observe the expression levels of CUX1 and the PI3K/AKT signaling pathway related proteins [phosphorylated phosphoinositide 3-kinase (p-PI3K), PI3K, phosphorylated Akt (p-AKT), AKT]. RESULTS: CUX1 expression was significantly downregulated in blood samples of patients with CIAKI and contrast-induced HK-2 cells. Contrast media (CM; iohexol) treatment significantly reduced the proliferation of HK-2 cells, promoted apoptosis, stimulated inflammation and oxidative stress that caused cell damage. CUX1 overexpression alleviated cell damage by significantly improving the proliferation level of HK-2 cells induced by CM, inhibiting cell apoptosis, and reducing the level of LDH in culture supernatant and the expression of IL-1ß, TNF-α and MDA in cells. CM treatment significantly inhibited the activity of PI3K/AKT signaling pathway activity. Nevertheless, up-regulating CUX1 could activate the PI3K/AKT signaling pathway activity in HK-2 cells induced by CM. CONCLUSION: CUX1 promotes cell proliferation, inhibits apoptosis, and reduces inflammation and oxidative stress in CM-induced HK-2 cells to alleviate CM-induced damage. The mechanism of CUX1 may be correlated with activation of the PI3K/AKT signaling pathway.


Assuntos
Injúria Renal Aguda , Apoptose , Meios de Contraste , Células Epiteliais , Proteínas de Homeodomínio , Túbulos Renais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Meios de Contraste/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Linhagem Celular , Fatores de Transcrição/metabolismo , Masculino , Iohexol , Feminino , Proliferação de Células/efeitos dos fármacos , Pessoa de Meia-Idade , Proteínas Repressoras
19.
Metab Brain Dis ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105973

RESUMO

Alzheimer's disease (AD), a prevalent cognitive disorder among the elderly, is frequently linked to the abnormal accumulation of myloid-ß (Aß), which is mainly as a result of neuronal death and inflammation. Diosmin, a flavonoid, is considered a potential drug for the treatment of AD. Our study aimed to uncover the molecular mechanism of diosmin in AD therapy. Here, rats were randomly divided into three groups: control, Aß25-35, and Aß25-35 + diosmin groups. AD model rats were induced by Aß25-35 intraventricular injection, meanwhile 50 mg/kg diosmin was orally administered for 6-week intervention. Morris water maze test assessed learning and memory abilities. Hippocampal neuronal damage was determined by HE, Nissl, and TUNEL staining. These assays indicate that diosmin improves cognitive dysfunction and reduces hippocampal neuronal loss and apoptosis. Western blot showed that diosmin reduced Bax (1.21 ± 0.12) and cleaved caspase-3 (1.27 ± 0.12) expression, and increased Bcl-2 (0.70 ± 0.06), p-PI3K (0.71 ± 0.08), and p-AKT (0.96 ± 0.10) in the hippocampus. ELISA indicated diosmin reduces IL-1ß, IL-6, and TNF-α levels, suggesting anti-inflammation effect. These results suggest that diosmin inhibits neuronal apoptosis and neuroinflammatory responses to improve cognitive dysfunction in AD rats, possibly related to upregulation of the PI3K/AKT pathway, providing a scientific basis for its use in AD treatment.

20.
Mar Drugs ; 22(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786619

RESUMO

Among female oncology patients, cervical cancer stands as the fourth most prevalent malignancy, exerting significant impacts on their health. Over 600,000 women received the diagnosis of cervical cancer in 2020, and the illness claimed over 300,000 lives globally. Curdepsidone A, a derivative of depsidone, was isolated from the secondary metabolites of Curvularia sp. IFB-Z10. In this study, we revised the molecular structure of curdepsidone A and investigated the fundamental mechanism of the anti-tumor activity of curdepsidone A in HeLa cells for the first time. The results demonstrated that curdepsidone A caused G0/G1 phase arrest, triggered apoptosis via a mitochondrial apoptotic pathway, blocked the autophagic flux, suppressed the PI3K/AKT pathway, and increased the accumulation of reactive oxygen species (ROS) in HeLa cells. Furthermore, the PI3K inhibitor (LY294002) promoted apoptosis induced by curdepsidone A, while the PI3K agonist (IGF-1) eliminated such an effect. ROS scavenger (NAC) reduced curdepsidone A-induced cell apoptosis and the suppression of autophagy and the PI3K/AKT pathway. In conclusion, our results revealed that curdepsidone A hindered cell growth by causing cell cycle arrest, and promoted cell apoptosis by inhibiting autophagy and the ROS-mediated PI3K/AKT pathway. This study provides a molecular basis for the development of curdepsidone A as a new chemotherapy drug for cervical cancer.


Assuntos
Apoptose , Autofagia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Células HeLa , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA