Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 117(4): 802-817, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954848

RESUMO

Glycosylphosphatidylinositol (GPI)-linked molecules are surface-exposed membrane components that influence the infectivity, virulence and transmission of many eukaryotic pathogens. Procyclic (insect midgut) forms of Trypanosoma brucei do not require GPI-anchored proteins for growth in suspension culture. Deletion of TbGPI8, and inactivation of the GPI:protein transamidase complex, is tolerated by cultured procyclic forms. Using a conditional knockout, we show TbGPI8 is required for social motility (SoMo). This collective migration by cultured early procyclic forms has been linked to colonization of the tsetse fly digestive tract. The SoMo-negative phenotype was observed after a lag phase with respect to loss of TbGPI8 and correlated with an unexpectedly slow loss of procyclins, the major GPI-anchored proteins. Procyclins are not essential for SoMo, however, suggesting a requirement for at least one other GPI-anchored protein. Loss of TbGPI8 initiates the transition from early to late procyclic forms; this effect was observed in a subpopulation in suspension culture, and was more pronounced when cells were cultured on SoMo plates. Our results indicate two, potentially interlinked, scenarios that may explain the previously reported failure of TbGPI8 deletion mutants to establish a midgut infection in the tsetse fly: interference with stage-specific gene expression and absence of SoMo.


Assuntos
Trypanosoma brucei brucei , Moscas Tsé-Tsé , Animais , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Glicosilfosfatidilinositóis , Fenótipo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo
2.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32220290

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Assuntos
Aciltransferases/genética , Moléculas de Adesão Celular/genética , Doenças Cerebelares/genética , Epilepsia/genética , Variação Genética/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Alelos , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Malformações do Sistema Nervoso/genética , Linhagem , Síndrome
3.
J Neurophysiol ; 114(2): 1146-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26133798

RESUMO

The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Receptoras Sensoriais/fisiologia , Percepção do Tato/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Moléculas de Adesão Celular/genética , Técnicas de Silenciamento de Genes , Técnicas de Genotipagem , Mutação , Técnicas de Patch-Clamp , Fenótipo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Sódio/metabolismo , Percepção do Tato/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
J Dermatol Sci ; 85(2): 131-134, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27919619

RESUMO

BACKGROUND: Glycosylphosphatidylinositol (GPI) acts as a membrane anchor and a post-translational modifier for more than 150 proteins (called GPI-anchored proteins: GPI-APs). However, little study has been done to explore the role of GPI-APs in melanocytes. METHODS: The relationship between the mRNA expression of the genes which play essential roles in GPI anchoring system [phosphatidylinositol glycan, class A, and class K gene (PIGA, PIGK)] and melanogenesis-related genes (MITF, TYRP1, TYRP2, and TYR) as well as DOPA oxidase activities were evaluated in 13 different normal human epidermal melanocytes (NHEMs). A short tandem repeat (STR) polymorphism located in the predicted promoter region of PIGK was genotyped in the NHEMs. RNA interference experiment of PIGK was also conducted using one of the NHEMs. RESULTS: PIGK mRNA expression in NHEMs were strongly in inverse correlation with TYR mRNA and DOPA oxidase activities. NHEMs with the STR polymorphism revealed a low level of PIGK expression. However, a transient knockdown of PIGK in NHEM failed to reveal significant changes in the expression of TYR mRNA and DOPA oxidase activity. CONCLUSIONS: This report firstly demonstrated that inadequate protein-GPI anchoring caused by suppression of PIGK might affect the expression or function of some GPI-APs associated with tyrosinase activity.


Assuntos
Moléculas de Adesão Celular/genética , Regulação da Expressão Gênica/genética , Melanócitos/enzimologia , Repetições de Microssatélites/genética , Monofenol Mono-Oxigenase/metabolismo , Polimorfismo Genético , Técnicas de Silenciamento de Genes , Glicosilfosfatidilinositóis/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Fator de Transcrição Associado à Microftalmia , Oxirredutases/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA