Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(23): 13039-13053, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809522

RESUMO

Deregulation of mitochondrial functions in hepatocytes contributes to many liver diseases, such as nonalcoholic fatty liver disease (NAFLD). Lately, it was referred to as MAFLD (metabolism-associated fatty liver disease). Hesperetin (Hst), a bioactive flavonoid constituent of citrus fruit, has been proven to attenuate NAFLD. However, a potential connection between its preventive activities and the modulation of mitochondrial functions remains unclear. Here, our results showed that Hst alleviates palmitic acid (PA)-triggered NLRP3 inflammasome activation and cell death by inhibition of mitochondrial impairment in HepG2 cells. Hst reinstates fatty acid oxidation (FAO) rates measured by seahorse extracellular flux analyzer and intracellular acetyl-CoA levels as well as intracellular tricarboxylic acid cycle metabolites levels including NADH and FADH2 reduced by PA exposure. In addition, Hst protects HepG2 cells against PA-induced abnormal energetic profile, ATP generation reduction, overproduction of mitochondrial reactive oxygen species, and collapsed mitochondrial membrane potential. Furthermore, Hst improves the protein expression involved in PINK1/Parkin-mediated mitophagy. Our results demonstrate that it restores PA-impaired mitochondrial function and sustains cellular homeostasis due to the elevation of PINK1/Parkin-mediated mitophagy and the subsequent disposal of dysfunctional mitochondria. These results provide therapeutic potential for Hst utilization as an effective intervention against fatty liver disease.


Assuntos
Hesperidina , Mitocôndrias , Mitofagia , Ácido Palmítico , Proteínas Quinases , Ubiquitina-Proteína Ligases , Humanos , Células Hep G2 , Ácido Palmítico/farmacologia , Hesperidina/farmacologia , Mitofagia/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Substâncias Protetoras/farmacologia
2.
Vet Microbiol ; 286: 109891, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866328

RESUMO

Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1ß, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.


Assuntos
Vírus da Bronquite Infecciosa , Animais , Baço , Mitofagia , Galinhas , Flavonoides/farmacologia , Citocinas/genética , Macrófagos , Antivirais
3.
Phytomedicine ; 108: 154494, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36279758

RESUMO

BACKGROUND: Mitochondrial dysfunction is an important pathological feature of chronic heart failure (CHF). Regulation of mitophagy can effectively maintain mitochondrial homeostasis and energy metabolism, thereby inhibiting the development of CHF. Nuanxinkang (NXK), a Chinese herbal compound preparation, has significant cardioprotective effects on CHF; however, its underlying mechanism on mitophagy has not been completely clarified. This research intended to investigate the mechanism of NXK in treating myocardial infarction (MI)-induced CHF. METHODS: The left anterior descending coronary artery (LAD) ligation surgery was performed to establish an MI-induced CHF model in male C57BL/6 mice. From 1 day after surgery, mice were given NXK (0.41, 0.82 or 1.65 g/kg/d), Perindopril (PDPL, 0.607 mg/kg/d), or an equivalent amount of sterile water by gavage for 28 continuous days. Then, mice were examined for cardiac function, myocardial fibrosis, cardiomyocyte apoptosis, mitochondrial structure and mitophagy levels of cardiomyocytes, etc. In addition, a hypoxic injury model was created using HL-1 cardiomyocytes from wild-type (WT) mice. HL-1 cells were pretreated with or without NXK-containing serum. Mitochondrial function and mitophagy levels were examined in HL-1 cells. RESULTS: In MI-induced CHF mice, cardiac dysfunction, severe cardiac remodeling, elevated levels of oxidative stress, reduced ATP levels, and inhibition of PINK1/Parkin-mediated mitophagy were observed. High-dose NXK treatment (1.65 g/kg/d) significantly improved myocardial energy metabolism, inhibited cardiac remodeling, improved cardiac function, and restored cardiac PINK1/Parkin-mediated mitophagy levels to some extent in MI mice. In vitro, elevated levels of mitochondrial reactive oxygen species (ROS) with impaired mitochondrial membrane potential (ΔΨm) were observed in hypoxic HL-1 cells. While NXK treatment significantly protected cardiomyocytes from hypoxia-induced mitochondrial dysfunction, which is consistent with the in vivo results. Further studies showed that NXK could increase PINK1/Parkin-mediated mitophagy levels in cardiomyocytes, which could be blocked by the mitophagy inhibitor Mdivi-1. CONCLUSION: In conclusion, NXK could prevent cardiac mitochondrial dysfunction and improve cardiac function against MI-induced CHF by promoting Pink1/Parkin-mediated mitophagy, which represents a very prospective strategy for the treatment of CHF.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Masculino , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Camundongos Endogâmicos C57BL , Mitofagia , Infarto do Miocárdio/tratamento farmacológico , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Remodelação Ventricular , Medicamentos de Ervas Chinesas/farmacologia
4.
Front Immunol ; 14: 1127610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441072

RESUMO

Objective: Random skin flaps have many applications in plastic and reconstructive surgeries. However, distal flap necrosis restricts wider clinical utility. Mitophagy, a vital form of autophagy for damaged mitochondria, is excessively activated in flap ischemia/reperfusion (I/R) injury, thus inducing cell death. Aldehyde dehydrogenase-2 (ALDH2), an allosteric tetrameric enzyme, plays an important role in regulating mitophagy. We explored whether ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) could reduce the risk of ischemic random skin flap necrosis, and the possible mechanism of action. Methods: Modified McFarlane flap models were established in 36 male Sprague-Dawley rats assigned randomly to three groups: a low-dose Alda-1 group (10 mg/kg/day), a high-dose Alda-1 group (20 mg/kg/day) and a control group. The percentage surviving skin flap area, neutrophil density and microvessel density (MVD) were evaluated on day 7. Oxidative stress was quantitated by measuring the superoxide dismutase (SOD) and malondialdehyde (MDA) levels. Blood perfusion and skin flap angiogenesis were assessed via laser Doppler flow imaging and lead oxide-gelatin angiography, respectively. The expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α), vascular endothelial growth factor (VEGF), ALDH2, PTEN-induced kinase 1 (PINK1), and E3 ubiquitin ligase (Parkin) were immunohistochemically detected. Indicators of mitophagy such as Beclin-1, p62, and microtubule-associated protein light chain 3 (LC3) were evaluated by immunofluorescence. Results: Alda-1 significantly enhanced the survival area of random skin flaps. The SOD activity increased and the MDA level decreased, suggesting that Alda-1 reduced oxidative stress. ALDH2 was upregulated, and mitophagy-related proteins (PINK1, Parkin, Beclin-1, p62, and LC3) were downregulated, indicating that ALDH2 inhibited mitophagy through the PINK1/Parkin signaling pathway. Treatment with Alda-1 reduced neutrophil infiltration and expressions of inflammatory cytokines. Alda-1 significantly upregulated VEGF expression, increased the MVD, promoted angiogenesis, and enhanced blood perfusion. Conclusion: ALDH2 activation can effectively enhance random skin flap viability via inhibiting PINK1/Parkin-dependent mitophagy. Moreover, enhancement of ALDH2 activity also exerts anti-inflammatory and angiogenic properties.


Assuntos
Traumatismo por Reperfusão , Fator A de Crescimento do Endotélio Vascular , Animais , Masculino , Ratos , Aldeído Desidrogenase/uso terapêutico , Proteína Beclina-1 , Citocinas/uso terapêutico , Isquemia , Necrose , Complicações Pós-Operatórias , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase , Ubiquitina-Proteína Ligases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Ethnopharmacol ; 307: 116091, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36592823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qidan Tiaozhi capsule (QD), a traditional Chinese medicine, has been used to treat metabolic syndrome for over a decade. However, the mechanism of QD in the treatment of metabolic syndrome is still unknown. AIM OF THE STUDY: Growing studies demonstrate that impaired mitophagy is one of the important causes of metabolic syndrome. Thus, this research aims to investigate the mechanism of mitophagy in the QD treatment of metabolic syndrome. MATERIALS AND METHODS: Network pharmacology and molecular docking were used to probe the mechanism of QD treatment of metabolic syndrome. In an oleic acid-induced cell model, glucose consumption and uptake capacity, triglyceride (TG), total cholesterol (TC), malonaldehyde (MDA), superoxide dismutase (SOD) and ROS levels, and mitochondrial membrane potential (MMP) were examined. mRFP-GFP-LC3 adenovirus and GFP-LC3 lentivirus were used to examine the effect of QD on mitophagy. The IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were also determined. What's more, the PINK1 gene was silenced to verify the above findings. In a high-fat diet-fed mouse model, body weight, organ indexes, OGTT, ITT, HOMA-IR, insulin sensitivity, serum MDA, SOD, TC, TG, LDL-C and HDL-C, hepatic TC, TG, LDL-C and HDL-C levels, hepatic steatosis, and IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were investigated. RESULTS: Results from network pharmacology and molecular docking suggested that QD might suppress oxidative stress to improve metabolic syndrome. In an oleic acid-induced cell model, compared with the model group, enhanced glucose consumption and uptake ability, inhibited intracellular lipid accumulation, TC, TG, MDA and ROS levels, and increased SOD level and MMP were found in QD groups. And mitophagy levels, IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were promoted. Interestingly, PINK1 silencing reversed the therapeutic action of QD on oleic acid-induced cells. In high-fat diet-fed mice, inhibited body weight, abdominal fat indexes, liver indexes, HOMA-IR, serum and hepatic TC, TG and LDL-C, serum MDA and hepatic steatosis, and increased insulin sensitivity, serum and hepatic HDL-C, serum SOD, and activated IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were found in QD groups. CONCLUSION: QD activates AMPK/PINK1-Parkin-mediated mitophagy to suppress oxidative stress to treat metabolic syndrome.


Assuntos
Medicamentos de Ervas Chinesas , Fígado Gorduroso , Resistência à Insulina , Síndrome Metabólica , Mitofagia , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , LDL-Colesterol , Síndrome Metabólica/tratamento farmacológico , Mitofagia/efeitos dos fármacos , Simulação de Acoplamento Molecular , Ácido Oleico/farmacologia , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos , Ubiquitina-Proteína Ligases/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
6.
Redox Biol ; 38: 101776, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161305

RESUMO

Phthalate ester plasticizers are used to improve the plasticity and strength of plastics. One of the most widely used and studied, di-2-ethylhexyl phthalate (DEHP), has been labeled as an endocrine disruptor. The major and toxic metabolic derivative of DEHP, mono-2-ethylhexyl phthalate (MEHP), is capable of interfering with mitochondrial function, but its mechanism of action on mitophagy remains elusive. Here, we report that MEHP exacerbates cytotoxicity by amplifying the PINK1-Parkin-mediated mitophagy pathway. First, MEHP exacerbated mitochondrial damage induced by low-dose CCCP via increased reactive oxygen species (ROS) production, decreased mitochondrial membrane potential (MMP), and enhanced fragmentation in mitochondria. Second, co-exposure to MEHP and CCCP ("MEHP-CCCP") induced robust mitophagy. Mechanistically, MEHP-CCCP stabilized PINK1, increased the level of phosphorylated ubiquitin (pSer 65-Ub), and led to Parkin mitochondrial translocation and activation. Third, MEHP-CCCP synergistically caused more cell death, while inhibition of mitophagy, either through chemical or gene silencing, reduced cell death. Finally and importantly, co-treatment with N-acetyl cysteine (NAC) completely counteracted the effects of MEHP-CCCP, suggesting that mitochondrial ROS played a vital role in this process. Our results link mitophagy and MEHP cytotoxicity, providing an insight into the potential roles of endocrine disrupting chemicals (EDCs) in human diseases such as Parkinson's disease.


Assuntos
Mitocôndrias , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Dietilexilftalato/análogos & derivados , Humanos , Ácidos Ftálicos , Proteínas Quinases/genética , Espécies Reativas de Oxigênio , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA