Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Mol Microbiol ; 121(1): 116-128, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038061

RESUMO

Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.


Assuntos
Bacteriófagos , Pseudomonas aeruginosa , Quinolonas , Pseudomonas aeruginosa/genética , Bacteriófagos/metabolismo , Transdução de Sinais , Percepção de Quorum/genética , Replicação Viral , Proteínas de Bactérias/metabolismo
2.
J Bacteriol ; 206(5): e0027823, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38624234

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that induces virulence gene expression in response to host-mediated iron starvation. Recently, our laboratory showed that some virulence factors are responsive to iron limitation in static but not shaking growth conditions. One of these is the HSI-2-type six secretion system (T6SS), which is also induced during chronic infection. Iron regulation of T6SS was partially impacted by the iron-responsive PrrF sRNA and completely dependent upon the Pseudomonas quinolone signal (PQS) biosynthetic gene pqsA. Here, we analyzed the impact of iron on the expression of two small regulatory RNAs (sRNAs), RsmY and RsmZ, that activate the expression of T6SS by sequestering the RsmA translation inhibitor. Our results demonstrate that iron starvation induces the expression of RsmY and RsmZ in static but not shaking cultures. We further show that this induction occurs through the rsmY and rsmZ promoters and is dependent upon PqsA. Disruption of either the pqsR gene also eliminated iron-dependent regulation of rsmY and rsmZ promoter activity. Taken together, our results show novel targets of iron regulation that are specific to static growth, highlighting the importance of studying regulatory mechanisms in static communities that may be more representative of growth during chronic infection.IMPORTANCEIron is a central component of various bacterial metabolic pathways making it an important host-acquired nutrient for pathogens to establish infection. Previous iron regulatory studies primarily relied on shaking bacterial cultures; while these ensure cultural homogeneity, they do not reflect growth conditions during infection. We recently showed that static growth of Pseudomonas aeruginosa promotes iron-dependent regulation of a type six secretion system (T6SS), a virulence factor that is induced during chronic infections. In the current study, we found that static growth also promotes iron-dependent regulation of the RsmY and RsmZ sRNAs, which are global regulators that affect T6SS during chronic P. aeruginosa lung infection. Hence, our work demonstrates the Rsm sRNAs as potential effectors of iron regulation during static growth that may also be relevant in chronic infection.


Assuntos
Regulação Bacteriana da Expressão Gênica , Ferro , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ferro/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
J Bacteriol ; 206(1): e0027623, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38169296

RESUMO

Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated with regulating many virulence factors P. aeruginosa secretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system, las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as part of its pathogenicity. P. aeruginosa infections are associated with nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in the P. aeruginosa lifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.


Assuntos
Biofilmes , Piocianina , Histidina Quinase/genética , Histidina Quinase/metabolismo , Percepção de Quorum , Fatores de Virulência/metabolismo , Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia
4.
Cell Biol Int ; 48(2): 201-215, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885132

RESUMO

Ischemic stroke is one of the leading causes of death and disability among adults worldwide. Intravenous thrombolysis is the only approved pharmacological treatment for acute ischemic stroke. However, reperfusion by thrombolysis will lead to the rapid activation of microglia cells which induces interferon-inflammatory response in the ischemic brain tissues. Panax quinquefolium saponins (PQS) has been proven to be effective in acute ischemic stroke, but there is no unified understanding about its specific mechanism. Here, we will report for the first time that PQS can significantly inhibit the activation of microglia cells in cerebral of MCAO rats via activation of Nrf2/miR-103-3p/TANK axis. Our results showed that PQS can directly bind to Nrf2 protein and inhibit its ubiquitination, which result in the indirectly enhancing the expression of TANK protein via transcriptional regulation on miR-103-3p, and finally to suppress the nuclear factor kappa-B dominated rapid activation of microglial cells induced by oxygen-glucose deprivation/reoxygenation  vitro and cerebral ischemia-reperfusion injury in vivo. In conclusion, our study not only revealed the new mechanism of PQS in protecting against the inflammatory activation of microglia cells caused by cerebral ischemia-reperfusion injury, but also suggested that Nrf2 is a potential target for development of new drugs of ischemic stroke. More importantly, our study also reminded that miR-103-3p might be used as a prognostic biomarker for patients with ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Saponinas , Ratos , Humanos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Microglia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Saponinas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Apoptose
5.
Microbiology (Reading) ; 169(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38117289

RESUMO

Intravenous gallium nitrate therapy is a novel therapeutic strategy deployed to combat chronic Pseudomonas aeruginosa biofilm infections in the lungs of cystic fibrosis (CF) patients by interfering with iron (Fe3+) uptake. The therapy is a source of Ga3+, which competes with Fe3+ for siderophore binding, subsequently disrupting iron metabolism and inhibiting biofilm proliferation in vivo. It was recently demonstrated that the Pseudomonas quinolone signal (PQS) can chelate Fe3+ to assist in bacterial iron uptake. However, it is unknown whether exogenous gallium also targets [Fe(PQS)3] uptake, which, in turn, would extend the mechanism of gallium therapy beyond siderophore competition, potentially supporting use of the therapy against P. aeruginosa mutants deficient in siderophore uptake proteins. To that end, the thermodynamic feasibility of iron-for-gallium cation exchange into [Fe(PQS)3] was evaluated using quantum chemical density functional theory (DFT) modelling and verified experimentally using 1H nuclear magnetic resonance (NMR). We demonstrate here that Ga3+ can strongly bind to three PQS molecules and, furthermore, displace and substitute Fe3+ from the native chelate pocket within PQS complexes, through a Trojan horse mechanism, retaining the key structural features present within the native ferric complex. As such, [Fe(PQS)3] complexes, in addition to ferric-siderophore complexes, represent another target for gallium therapy.


Assuntos
Gálio , Pseudomonas aeruginosa , Humanos , Ferro , Sideróforos , Biofilmes , Gálio/farmacologia
6.
Microbiology (Reading) ; 169(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819040

RESUMO

Pseudomonas aeruginosa is a widespread γ-proteobacterium and an important opportunistic pathogen. The genetically diverse P. aeruginosa phylogroup 3 strains are characterized by producing the pore-forming ExlA toxin and by their lack of a type III secretion system. However, like all strains of this species, they produce several virulence-associated traits, such as elastase, rhamnolipids and pyocyanin, which are regulated by quorum sensing (QS). The P. aeruginosa QS response comprises three systems (Las, Rhl and Pqs, respectively) that hierarchically regulate these virulence factors. The Pqs QS system is composed of the PqsR transcriptional factor, which, coupled with the alkyl-quinolones HHQ or PQS, activates the transcription of the pqsABCDE operon. The products of the first four genes of this operon produce HHQ, which is then converted to PQS by PqsH, while PqsE forms a complex with RhlR and stabilizes it. In this study we report that mutations affecting the Pqs system are particularly common in phylogroup 3 strains. To better understand QS in phylogroup 3 strains we studied strain MAZ105 isolated from tomato rhizosphere and showed that it contains mutations in the central QS transcriptional regulator, LasR, and in the gene encoding the PqsA enzyme involved in the synthesis of PQS. However, it can still produce QS-regulated virulence factors and is virulent in Galleria mellonella and mildly pathogenic in the mouse abscess/necrosis model; our results show that this may be due to the expression of pqsE from a different PqsR-independent promoter than the pqsA promoter. Our results indicate that using anti-virulence therapy based on targeting the PQS system will not be effective against infections by P. aeruginosa phylogroup 3 strains.


Assuntos
Percepção de Quorum , Solanum lycopersicum , Animais , Camundongos , Percepção de Quorum/genética , Pseudomonas aeruginosa/metabolismo , Rizosfera , Transdução de Sinais/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018121

RESUMO

In Pseudomonas aeruginosa, quorum sensing (QS) depends on an interconnected regulatory hierarchy involving the Las, Rhl and Pqs systems, which are collectively responsible for the co-ordinated synthesis of a diverse repertoire of N-acylhomoserine lactones (AHLs) and 2-alkyl-4-quinolones (AQs). Apparent population density-dependent phenomena such as QS may, however, be due to growth rate and/or nutrient exhaustion in batch culture. Using continuous culture, we show that growth rate and population density independently modulate the accumulation of AHLs and AQs such that the highest concentrations are observed at a slow growth rate and high population density. Carbon source (notably succinate), nutrient limitation (C, N, Fe, Mg) or growth at 25 °C generally reduces AHL and AQ levels, except for P and S limitation, which result in substantially higher concentrations of AQs, particularly AQ N-oxides, despite the lower population densities achieved. Principal component analysis indicates that ~26 % variation is due to nutrient limitation and a further 30 % is due to growth rate. The formation of N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) turnover products such as the ring opened form and tetramic acid varies with the limiting nutrient limitation and anaerobiosis. Differential ratios of N-butanoyl-homoserine lactone (C4-HSL), 3OC12-HSL and the AQs as a function of growth environment are clearly apparent. Inactivation of QS by mutation of three key genes required for QS signal synthesis (lasI, rhlI and pqsA) substantially increases the concentrations of key substrates from the activated methyl cycle and aromatic amino acid biosynthesis, as well as ATP levels, highlighting the energetic drain that AHL and AQ synthesis and hence QS impose on P. aeruginosa.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/genética , Lactonas/química , Lactonas/metabolismo , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética
8.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32898859

RESUMO

Quadruplexes (G4s) are of interest, which increases with the number of identified G4 structures and knowledge about their biomedical potential. These unique motifs form in many organisms, including humans, where their appearance correlates with various diseases. Scientists store and analyze quadruplexes using recently developed bioinformatic tools-many of them focused on DNA structures. With an expanding collection of G4 RNAs, we check how existing tools deal with them. We review all available bioinformatics resources dedicated to quadruplexes and examine their usefulness in G4 RNA analysis. We distinguish the following subsets of resources: databases, tools to predict putative quadruplex sequences, tools to predict secondary structure with quadruplexes and tools to analyze and visualize quadruplex structures. We share the results obtained from processing specially created RNA datasets with these tools. Contact: mszachniuk@cs.put.poznan.pl Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Quadruplex G , RNA/química , Algoritmos , Sequência de Bases , Simulação por Computador , DNA/química , DNA/genética , Humanos , Modelos Moleculares , RNA/genética , Reprodutibilidade dos Testes
9.
Appl Environ Microbiol ; 89(10): e0118423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796010

RESUMO

Outer membrane vesicle (OMV)-delivered Pseudomonas quinolone signal (PQS) plays a critical role in cell-cell communication in Pseudomonas aeruginosa. However, the functions and mechanisms of membrane-enclosed PQS in interspecies communication in microbial communities are not clear. Here, we demonstrate that PQS delivered by both OMVs from P. aeruginosa and liposome reduces the competitiveness of Burkholderia cenocepacia, which usually shares the same niche in the lungs of cystic fibrosis patients, by interfering with quorum sensing (QS) in B. cenocepacia through the LysR-type regulator ShvR. Intriguingly, we found that ShvR regulates the production of the QS signals cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) by directly binding to the promoters of signal synthase-encoding genes. Perception of PQS influences the regulatory activity of ShvR and thus ultimately reduces QS signal production and virulence in B. cenocepacia. Our findings provide insights into the interspecies communication mediated by the membrane-enclosed QS signal among bacterial species residing in the same microbial community.IMPORTANCEQuorum sensing (QS) is a ubiquitous cell-to-cell communication mechanism. Previous studies showed that Burkholderia cenocepacia mainly employs cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) QS systems to regulate biological functions and virulence. Here, we demonstrate that Pseudomonas quinolone signal (PQS) delivered by outer membrane vesicles from Pseudomonas aeruginosa or liposome attenuates B. cenocepacia virulence by targeting the LysR-type regulator ShvR, which regulates the production of the QS signals BDSF and AHL in B. cenocepacia. Our results not only suggest the important roles of membrane-enclosed PQS in interspecies and interkingdom communications but also provide a new perspective on the use of functional nanocarriers loaded with QS inhibitors for treating pathogen infections.


Assuntos
Burkholderia cenocepacia , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Virulência/genética , Acil-Butirolactonas/metabolismo , Lipossomos/metabolismo , Proteínas de Bactérias/genética , Burkholderia cenocepacia/genética , Pseudomonas aeruginosa/metabolismo , Regulação Bacteriana da Expressão Gênica
10.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768357

RESUMO

The guanine base in nucleic acids is, among the other bases, the most susceptible to being converted into 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) when exposed to reactive oxygen species. In double-helix DNA, 8-oxodG can pair with adenine; hence, it may cause a G > T (C > A) mutation; it is frequently referred to as a form of DNA damage and promptly corrected by DNA repair mechanisms. Moreover, 8-oxodG has recently been redefined as an epigenetic factor that impacts transcriptional regulatory elements and other epigenetic modifications. It has been proposed that 8-oxodG exerts epigenetic control through interplay with the G-quadruplex (G4), a non-canonical DNA structure, in transcription regulatory regions. In this review, we focused on the epigenetic roles of 8-oxodG and the G4 and explored their interplay at the genomic level.


Assuntos
Dano ao DNA , Desoxiguanosina , 8-Hidroxi-2'-Desoxiguanosina , Reparo do DNA , DNA/química
11.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675127

RESUMO

The type VI secretion system (T6SS), a protein translocation nanomachine, is widely distributed in Gram-negative bacteria and delivers effectors directly into target cells or the extracellular environment to help the bacteria gain a competitive fitness advantage and promote bacterial survival in harmful environments. In this study, we demonstrated that the synthesis of the Pseudomonas quinolone signal (PQS) in Pseudomonas aeruginosa PAO1 was inhibited by the H3-T6SS gene cluster under iron-rich conditions, and that this inhibition was relieved under iron starvation conditions. Conversely, PQS differentially regulated the expression of the H3-T6SS structural genes and the effector protein gene tseF. The expression of tseF was inhibited by PQS, while the expressions of the H3-T6SS structural genes were positively regulated by PQS. Further studies showed that the H3-T6SS was involved in the resistance of P. aeruginosa to oxidative stress caused by hydrogen peroxide (H2O2). Interestingly, H3-T6SS expression was neither induced by H2O2 stress nor regulated by OxyR (a global anti-oxidative transcriptional regulator) but was positively regulated by RpoS (a major transcription regulator of the stress response). In addition, we found that the clpV3 (a structural gene of H3-T6SS) mutation resulted in upregulation of two proteins related to PQS synthesis and many proteins related to oxidative stress resistance, while the expression of some iron storage proteins, especially Dps, were significantly downregulated. Furthermore, the clpV3 mutation led to an increase in the intracellular free Fe2+ content of P. aeruginosa. Further studies showed that both the PQS deficient mutation and overexpression of dps effectively restored the H2O2 sensitive phenotype of the H3-T6SS mutant. Finally, we proposed the following model of H3-T6SS-mediated resistance to H2O2 stress in P. aeruginosa. H3-T6SS not only reduces the intracellular free Fe2+ level by upregulating the expression of ferritin Dps, but also inhibits the synthesis of PQS to mediate the resistance of P. aeruginosa to H2O2 stress. This study highlights the important role of H3-T6SS in the ability of P. aeruginosa to combat H2O2 stress and provides a perspective for understanding the stress response mechanism of bacteria.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo VI , Pseudomonas aeruginosa/fisiologia , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
12.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570836

RESUMO

Inhibiting quorum sensing (QS), a central communication system, is a promising strategy to combat bacterial pathogens without antibiotics. Here, we designed novel hybrid compounds targeting the PQS (Pseudomonas quinolone signal)-dependent quorum sensing (QS) of Pseudomonas aeruginosa that is one of the multidrug-resistant and highly virulent pathogens with urgent need of new antibacterial strategies. We synthesized 12 compounds using standard procedures to combine halogen-substituted anthranilic acids with 4-(2-aminoethyl/4-aminobuthyl)amino-7-chloroquinoline, linked via 1,3,4-oxadiazole. Their antibiofilm activities were first pre-screened using Gram-negative Chromobacterium violaceum-based reporter, which identified compounds 15-19 and 23 with the highest anti-QS and minimal bactericidal effects in a single experiment. These five compounds were then evaluated against P. aeruginosa PAO1 to assess their ability to prevent biofilm formation, eradicate pre-formed biofilms, and inhibit virulence using pyocyanin as a representative marker. Compound 15 displayed the most potent antibiofilm effect, reducing biofilm formation by nearly 50% and pre-formed biofilm masses by 25%. On the other hand, compound 23 exhibited the most significant antivirulence effect, reducing pyocyanin synthesis by over 70%. Thus, our study highlights the potential of 1,3,4-oxadiazoles 15 and 23 as promising scaffolds to combat P. aeruginosa. Additionally, interactive QS systems should be considered to achieve maximal anti-QS activity against this clinically relevant species.


Assuntos
Quinolinas , Percepção de Quorum , Piocianina/farmacologia , Biofilmes , Virulência , Antibacterianos/farmacologia , Fatores de Virulência , Quinolinas/farmacologia , Pseudomonas aeruginosa , Chromobacterium
13.
Vet Res ; 53(1): 80, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209206

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a known bacterium that produces biofilms and causes severe infection. Furthermore, P. aeruginosa biofilms are extremely difficult to eradicate, leading to the development of chronic and antibiotic-resistant infections. Our previous study showed that a cathelicidin-related antimicrobial peptide (CRAMP) inhibits the formation of P. aeruginosa biofilms and markedly reduces the biomass of preformed biofilms, while the mechanism of eradicating bacterial biofilms remains elusive. Therefore, in this study, the potential mechanism by which CRAMP eradicates P. aeruginosa biofilms was investigated through an integrative analysis of transcriptomic, proteomic, and metabolomic data. The omics data revealed CRAMP functioned against P. aeruginosa biofilms by different pathways, including the Pseudomonas quinolone signal (PQS) system, cyclic dimeric guanosine monophosphate (c-di-GMP) signalling pathway, and synthesis pathways of exopolysaccharides and rhamnolipid. Moreover, a total of 2914 differential transcripts, 785 differential proteins, and 280 differential metabolites were identified. A series of phenotypic validation tests demonstrated that CRAMP reduced the c-di-GMP level with a decrease in exopolysaccharides, especially alginate, in P. aeruginosa PAO1 biofilm cells, improved bacterial flagellar motility, and increased the rhamnolipid content, contributing to the dispersion of biofilms. Our study provides new insight into the development of CRAMP as a potentially effective antibiofilm dispersant.


Assuntos
Peptídeos Antimicrobianos , Pseudomonas aeruginosa , Alginatos/metabolismo , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Proteínas de Bactérias/genética , Biofilmes , GMP Cíclico , Regulação Bacteriana da Expressão Gênica , Guanosina Monofosfato/metabolismo , Camundongos , Proteômica , Pseudomonas aeruginosa/metabolismo , Catelicidinas
14.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808191

RESUMO

Pseudomonas aeruginosa is a ubiquitously distributed soil and water bacterium and is considered an opportunistic pathogen in hospitals. In cystic fibrosis patients, for example, infections with P. aeruginosa can be severe and often lead to chronic or even fatal pneumonia. Therefore, rapid detection and further identification are of major importance in hospital hygiene and infection control. This work shows the electrochemical properties of five P. aeruginosa key metabolites considering their potential use as specific signaling agents in an electrochemical sensor system. The pure solutes of pyocyanin (PYO), Pseudomonas quinolone signal (PQS), pyochelin (PCH), 2-heptyl-4-hydroxyquinoline (HHQ), and 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) were analyzed by different electrochemical techniques (cyclic and square wave voltammetry) and measured using a Gamry Reference 600+ potentiostat. Screen-printed electrodes (DropSens DRP110; carbon working and counter, silver reference electrode) were used to determine signal specificities, detection limits, as well as pH dependencies of the substances. All of the compounds were electrochemically inducible with well-separated oxidation and/or reduction peaks at specific peak potentials relative to the reference electrode. Additionally, all analytes exhibited linear concentration dependency in ranges classically reported in the literature. The demonstration of these properties is a promising step toward direct multiplexed detection of P. aeruginosa in environmental and clinical samples and thus, can make a significant contribution to public health and safety.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Fibrose Cística/microbiologia , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Pseudomonas aeruginosa/química , Piocianina
15.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886841

RESUMO

Multidrug efflux pumps are critical elements in both intrinsic and acquired antibiotic resistance of bacterial populations. Consequently, most studies regarding these protein machineries focus on this specific phenotype. Nevertheless, different works show that efflux pumps participate in other aspects of bacterial physiology too. Herein, we study the Pseudomonas aeruginosa multidrug efflux pump MexJK. Previous studies, using model strains lacking MexAB-OprM and MexCD-OprJ efflux pumps, support that MexJK can extrude erythromycin, tetracycline, and triclosan. However, the results here reported indicate that this potential increased extrusion, in a mutant overexpressing mexJK, does not alter the antibiotics susceptibility in a wild-type genetic background where all intrinsic multidrug efflux pumps remain functional. Nevertheless, a clear impact on the quorum sensing (QS) response, mainly in the Pqs-dependent QS regulation network and in the expression of Pqs-regulated virulence factors, was observed linked to mexJK overexpression. The production of the siderophore pyoverdine strongly depended on the level of mexJK expression, suggesting that MexJK might participate in P. aeruginosa pyoverdine-dependent iron homeostasis. All in all, the results presented in the current article support that the functions of multidrug efflux pumps, as MexJK, go beyond antibiotic resistance and can modulate other relevant aspects of bacterial physiology.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/genética
16.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208954

RESUMO

Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Piocianina/análogos & derivados , Piocianina/síntese química , Piocianina/química , Piocianina/farmacologia
17.
Pharmacol Res ; 170: 105691, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044128

RESUMO

Interkingdom communication between bacteria and host organisms is one of the most interesting research topics in biology. Quorum sensing molecules produced by Gram-negative bacteria, such as acylated homoserine lactones and quinolones, have been shown to interact with host cell receptors, stimulating innate immunity and bacterial clearance. To our knowledge, there is no evidence that these molecules influence CNS function. Here, we have found that low micromolar concentrations of the Pseudomonas aeruginosa quorum sensing autoinducer, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibited polyphosphoinositide hydrolysis in mouse brain slices, whereas four selected acylated homoserine lactones were inactive. PQS also inhibited forskolin-stimulated cAMP formation in brain slices. We therefore focused on PQS in our study. Biochemical effects of PQS were not mediated by the bitter taste receptors, T2R4 and T2R16. Interestingly, submicromolar concentrations of PQS could be detected in the serum and brain tissue of adult mice under normal conditions. Levels increased in five selected brain regions after single i.p. injection of PQS (10 mg/kg), peaked after 15 min, and returned back to normal between 1 and 4 h. Systemically administered PQS reduced spontaneous locomotor activity, increased the immobility time in the forced swim test, and largely attenuated motor response to the psychostimulant, methamphetamine. These findings offer the first demonstration that a quorum sensing molecule specifically produced by Pseudomonas aeruginosa is centrally active and influences cell signaling and behavior. Quorum sensing autoinducers might represent new interkingdom signaling molecules between ecological communities of commensal, symbiotic, and pathogenic microorganisms and the host CNS.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , AMP Cíclico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/farmacologia , Percepção de Quorum , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Interações Hospedeiro-Patógeno , Hidrólise , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Quinolonas/metabolismo
18.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801847

RESUMO

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin's impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


Assuntos
Flavonoides/farmacologia , Quinolonas/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , China , Proteínas de Drosophila/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Flavonoides/metabolismo , Modelos Animais , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/uso terapêutico , Sistemas de Secreção Tipo III/efeitos dos fármacos , Virulência/efeitos dos fármacos , Fatores de Virulência
19.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31792010

RESUMO

Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureusin vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner.IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


Assuntos
Alginatos/metabolismo , Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Biofilmes , Coinfecção/microbiologia , Humanos , Interações Microbianas , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética
20.
Microbiology (Reading) ; 166(1): 44-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778108

RESUMO

Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af), the commonest bacterium and fungus in compromised host airways, compete for iron (Fe). The Pseudomonas quinolone signal (PQS), a Pa quorum sensing molecule, also chelates Fe, and delivers Fe to the Pa cell membrane using Pa siderophores. In models of Af biofilm formation or preformed biofilms, PQS inhibited Af in a low Fe environment. AfΔsidA (mutant unable to produce siderophores) biofilm was more sensitive to PQS inhibition than wild-type (WT), as was planktonic AfΔsidA growth. PQS decreased WT Af growth on agar. All these inhibitory actions were reversed by Fe. The Pa siderophore pyoverdin, or Af siderophore inhibitor celastrol, act cooperatively with PQS in Af inhibition. These findings all indicate PQS inhibition is owing to Fe chelation. Remarkably, in high Fe environments, PQS enhanced Af biofilm at 1/100 to 1/2000 Fe concentration required for Fe alone to enhance. Planktonic Af growth, and on agar, Af conidiation, were also enhanced by PQS+Fe compared to Fe alone. In contrast, neither AfΔsidA biofilm, nor planktonic AfΔsidA, were enhanced by PQS-Fe compared to Fe. When Af siderophore ferricrocin (FC),+PQS, were added to AfΔsidA, Af was then boosted more than by FC alone. Moreover, FC+PQS+Fe boosted AfΔsidA more than Fe, FC, FC+Fe, PQS+FC or PQS+Fe. Thus PQS-Fe maximal stimulation requires Af siderophores. PQS inhibits Af via chelation under low Fe conditions. In a high Fe environment, PQS paradoxically stimulates Af efficiently, and this involves Af siderophores. PQS production by Pa could stimulate Af in cystic fibrosis airways, where Fe homeostasis is altered and Fe levels increase, supporting fungal growth.


Assuntos
Aspergillus fumigatus/metabolismo , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Fibrose Cística/microbiologia , Mutação , Oxigênio/metabolismo , Quinolonas/farmacologia , Percepção de Quorum , Sideróforos/genética , Sideróforos/metabolismo , Sideróforos/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA