Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 38(35): 7683-7700, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30054395

RESUMO

Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.


Assuntos
Dano ao DNA/fisiologia , Neurônios Motores/enzimologia , Proteína-Arginina N-Metiltransferases/fisiologia , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Contração Isométrica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Musculares/enzimologia , Células Musculares/fisiologia , Junção Neuromuscular/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/deficiência , Proteína-Arginina N-Metiltransferases/genética , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Reflexo Anormal , Teste de Desempenho do Rota-Rod , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento
2.
J Neurosci ; 37(36): 8655-8666, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878098

RESUMO

Diverse molecular mechanisms regulate synaptic composition and function in the mammalian nervous system. The multifunctional protein arginine methyltransferase 8 (PRMT8) possesses both methyltransferase and phospholipase activities. Here we examine the role of this neuron-specific protein in hippocampal plasticity and cognitive function. PRMT8 protein localizes to synaptic sites, and conditional whole-brain Prmt8 deletion results in altered levels of multiple synaptic proteins in the hippocampus, using both male and female mice. Interestingly, these altered protein levels are due to post-transcriptional mechanisms as the corresponding mRNA levels are unaffected. Strikingly, electrophysiological recordings from hippocampal slices of mice lacking PRMT8 reveal multiple defects in excitatory synaptic function and plasticity. Furthermore, behavioral analyses show that PRMT8 conditional knock-out mice exhibit impaired hippocampal-dependent fear learning. Together, these findings establish PRMT8 as an important component of the molecular machinery required for hippocampal neuronal function.SIGNIFICANCE STATEMENT Numerous molecular processes are critically required for normal brain function. Here we use mice lacking protein arginine methyltransferase 8 (PRMT8) in the brain to examine how loss of this protein affects the structure and function of neurons in the hippocampus. We find that PRMT8 localizes to the sites of communication between neurons. Hippocampal neurons from mice lacking PRMT8 have no detectable structural differences compared with controls; however, multiple aspects of their function are altered. Consistently, we find that mice lacking PRMT8 also exhibit reduced hippocampus-dependent memory. Together, our findings establish important roles for PRMT8 in regulating neuron function and cognition in the mammalian brain.


Assuntos
Hipocampo/fisiopatologia , Transtornos da Memória/fisiopatologia , Transtornos Mentais/fisiopatologia , Proteína-Arginina N-Metiltransferases/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Animais , Feminino , Hipocampo/patologia , Masculino , Transtornos da Memória/complicações , Transtornos da Memória/patologia , Transtornos Mentais/complicações , Transtornos Mentais/patologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Proteína-Arginina N-Metiltransferases/genética , Sinapses/patologia
3.
Stem Cells ; 35(9): 2037-2049, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28543863

RESUMO

Basic fibroblast growth factor (bFGF) supplementation is critical to maintain the pluripotency of human pluripotent stem cells (hPSCs) through activation of PI3K/AKT, rather than MEK/ERK pathway. Thus, elaborate molecular mechanisms that preserve PI3K/AKT signaling upon bFGF stimulation may exist in hPSCs. Protein arginine methyltransferase 8 (PRMT8) was expressed and then its level gradually decreased during spontaneous differentiation of human embryonic stem cells (hESCs). PRMT8 loss- or gain-of-function studies demonstrated that PRMT8 contributed to longer maintenance of hESC pluripotency, even under bFGF-deprived conditions. Direct interaction of membrane-localized PRMT8 with p85, a regulatory subunit of PI3K, was associated with accumulation of phosphoinositol 3-phosphate and consequently high AKT activity. Furthermore, the SOX2 induction, which was controlled by the PRMT8/PI3K/AKT axis, was linked to mesodermal lineage differentiation. Thus, we propose that PRMT8 in hESCs plays an important role not only in maintaining pluripotency but also in controlling mesodermal differentiation through bFGF signaling toward the PI3K/AKT/SOX2 axis. Stem Cells 2017;35:2037-2049.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Pluripotentes/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Fenótipo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 473(1): 194-199, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27012206

RESUMO

Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells.


Assuntos
Regulação Enzimológica da Expressão Gênica , Células-Tronco Pluripotentes/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Diferenciação Celular , Regulação para Baixo , Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Células NIH 3T3 , Proteína Homeobox Nanog , Neurônios/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
5.
Stem Cells ; 33(3): 726-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25388207

RESUMO

Retinoids are morphogens and have been implicated in cell fate commitment of embryonic stem cells (ESCs) to neurons. Their effects are mediated by RAR and RXR nuclear receptors. However, transcriptional cofactors required for cell and gene-specific retinoid signaling are not known. Here we show that protein arginine methyl transferase (PRMT) 1 and 8 have key roles in determining retinoid regulated gene expression and cellular specification in a multistage neuronal differentiation model of murine ESCs. PRMT1 acts as a selective modulator, providing the cells with a mechanism to reduce the potency of retinoid signals on regulatory "hotspots." PRMT8 is a retinoid receptor target gene itself and acts as a cell type specific transcriptional coactivator of retinoid signaling at later stages of differentiation. Lack of either of them leads to reduced nuclear arginine methylation, dysregulated neuronal gene expression, and altered neuronal activity. Importantly, depletion of PRMT8 results in altered expression of a distinct set of genes, including markers of gliomagenesis. PRMT8 is almost entirely absent in human glioblastoma tissues. We propose that PRMT1 and PRMT8 serve as a rheostat of retinoid signaling to determine neuronal cell specification in a context-dependent manner and might also be relevant in the development of human brain malignancy.


Assuntos
Células-Tronco Embrionárias/citologia , Neurônios/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores do Ácido Retinoico/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Glioblastoma , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
6.
Neurol Res ; 46(6): 525-537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563325

RESUMO

BACKGROUND: Vascular dementia (VD) is the second most common type of dementia worldwide. Previous studies have proven that transcranial direct current stimulation (tDCS) has potential applications in relieving cognitive impairment in VD animal models. The purpose of this study was to probe the mechanism by which tDCS combined with swimming exercise improves the learning and memory abilities of VD model rats. METHOD: The VD rat model was induced using the permanent bilateral common carotid artery occlusion (2-VO) method; tDCS was applied to the rats and then they took part in swimming exercises. Rat memory, platform crossing time, and platform crossing frequency were analyzed via a water maze experiment. Nerve damage in the cortex and hippocampal CA1 area of the rats was observed using Nissl staining. Western blotting, immunohistochemistry, immunofluorescence staining and reverse transcription quantitative polymerase chain reaction (RT - qPCR) were used to determine the expression of related proteins and genes. The levels of oxidative stress were detected by kits. RESULTS: We demonstrated that VD model rats treated with tDCS combined with swimming exercise exhibited significant improvement in memory, and VD model rats exhibited significantly reduced neuronal loss in the hippocampus, and reduced microglial activation and M1 polarization. tDCS combined with swimming exercise protects VD model rats from oxidative stress through the miR-223-3p/protein arginine methyltransferase 8 (PRMT8) axis and inhibits the activation of the TLR4/NF-κB signaling pathway. CONCLUSION: Our results suggest that tDCS combined with swimming exercise improved the learning and memory ability of VD model rats by regulating the expression of PRMT8 through miR-223-3p to affect microglial activation and M1 polarization.


Assuntos
Demência Vascular , Memória , MicroRNAs , Microglia , Natação , Estimulação Transcraniana por Corrente Contínua , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Microglia/metabolismo , Demência Vascular/terapia , Ratos , Estimulação Transcraniana por Corrente Contínua/métodos , Memória/fisiologia , Ratos Sprague-Dawley , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/métodos , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia
7.
CNS Neurosci Ther ; 29(8): 2145-2161, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914965

RESUMO

OBJECTIVE: To explore the influence of protein arginine methyltransferase 8 (PRMT8) regulating glial cell-derived neurotrophic factor (GDNF) on neuron ferroptosis and macrophage polarization in spinal cord injury (SCI). METHODS: A rat model of SCI was established through an injury induced by an external force. Basso, Beattie, and Bresnahan score, hematoxylin and eosin staining, and immunofluorescence were used, respectively, to detect changes in rat locomotion, spinal cord histopathology, and NeuN expression in the spinal cord. Iron content in the spinal cord and levels of malondialdehyde and glutathione were measured using detection kits. Transmission electron microscopy was used to reveal the morphological characteristics of mitochondria. Western blotting was performed to detect PRMT8, GDNF, cystine/glutamate transporter XCT, glutathione peroxidase 4, 4-hydroxynonenal, heme oxygenase-1, inducible nitric oxide synthase (iNOS), CD16, and arginase 1 (Arg1). The expression levels of iNOS and Arg1 in the spinal cord were visualized by immunofluorescence. ELISA was performed to measure the expression levels of IL-6, IL-1ß, and TNF-α. Rat dorsal root ganglion (DRG) neurons and RMa-bm rat macrophages were treated with lipopolysaccharide under hypoxic conditions. The viability and iron content of the neurons were detected using Cell Counting Kit-8 and a specific probe, respectively. Flow cytometry and immunofluorescence were used to assess macrophage polarization. Chromatin immunoprecipitation was used to identify the binding of PRMT8 to the GDFN promoter. RESULTS: Neuronal ferroptosis and M1 macrophage polarization were promoted, and PRMT8 expression was downregulated in SCI. PRMT8 overexpression exerted therapeutic effects on injured DRG neurons and RMa-bm cells. Moreover, PRMT8 overexpression inhibited ferroptosis and M1 macrophage polarization in rats with SCI. PRMT8 promoted GDNF expression by catalyzing H3K4 methylation. Knockdown of GDNF counteracted the therapeutic effects of PRMT8 overexpression. CONCLUSION: Overexpression of PRMT8 may inhibit ferroptosis and M1 macrophage polarization by increasing GDNF expression, thereby alleviating SCI.


Assuntos
Ferroptose , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteína-Arginina N-Metiltransferases , Traumatismos da Medula Espinal , Animais , Ratos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Macrófagos/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Citocinas
8.
J Biochem ; 172(4): 233-243, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35818334

RESUMO

Amyloid-ß and tau pathologies are important factors leading to neurodegeneration in Alzheimer's disease (AD); however, the molecular mechanisms that link these pathologies remain unclear. Assuming that important though as yet unidentified factors inhibit/accelerate tau pathology and neuronal cell death under amyloid pathology, we sought to isolate and identify tau-interacting proteins from mouse brains with or without amyloid pathology. Among the proteins that were identified, we focused on protein arginine methyltransferase 8 (PRMT8), which interacts with tau specifically in the absence of amyloid pathology. To investigate the role of PRMT8 in the pathogenesis of AD, we conducted Prmt8 gene deletion and overexpression experiments in AppNL-G-F/MAPT double knock-in mice and analysed the resulting pathological alterations. PRMT8-knockout did not alter the AD pathology in double knock-in mice, whereas PRMT8-overexpression promoted tau phosphorylation, neuroinflammation and vacuole degeneration. To evaluate if such a PRMT8-induced vacuole degeneration depends on tau pathology, PRMT8 was overexpressed in tau-KO mice, which were consequently found to exhibit vacuole degeneration. In addition, proteomic analyses showed that PRMT8 overexpression facilitated the arginine methylation of vimentin. Abnormal protein methylation could be involved in PRMT8-induced brain pathologies. Taken together, PRMT8 may play an important role in the formation of tau pathology and vacuole degeneration.


Assuntos
Doença de Alzheimer , Proteínas de Transporte , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Arginina/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteômica , Vacúolos/metabolismo , Vimentina/metabolismo , Proteínas tau/metabolismo
9.
ACS Chem Neurosci ; 13(7): 1096-1104, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35275616

RESUMO

Activation and polarization of microglia are involved in neuroinflammation and regulate ischemic stroke-associated brain injury. Protein arginine methyltransferase 8 functions as a regulatory component of hypoxic stress-induced neuroinflammation. The protective effect of protein arginine methyltransferase 8 (PRMT8) against ischemic stroke-associated brain injury through regulation of microglia activation and polarization was investigated. First, PRMT8 was downregulated in middle cerebral artery occlusion (MCAO)-induced mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced SH-SY5Y. Injection with AAV-PRMT8 reduced infarct volumes in MCAO-induced mice. Moreover, injection with AAV-PRMT8 promoted neuronal survival and ameliorated histopathological changes in the brains of MCAO-induced mice. The neuronal apoptosis and neuroinflammation in MCAO-induced mice were suppressed by AAV-PRMT8 injection. Second, PRMT8 overexpression increased cell viability and suppressed the cell apoptosis and inflammation of OGD/R-induced SH-SY5Y. Third, injection with AAV-PRMT8 reduced almost 50% of CD86 + M1 microglia and enhanced about 20% of CD206 + M2 microglia. Furthermore, PRMT8 overexpression attenuated OGD/R-induced M1 phenotype polarization of BV2. Lastly, PRMT8 upregulated Lin28a and loss of Lin28a attenuated PRMT8 overexpression-induced increase in cell viability and decrease in cell apoptosis and inflammation of OGD/R-induced SH-SY5Y. In conclusion, PRMT8 promoted M2 phenotype polarization of microglia and suppressed neuronal apoptosis to ameliorate cerebral ischemia/reperfusion injury through upregulation of Lin28a.


Assuntos
Isquemia Encefálica , Proteína-Arginina N-Metiltransferases , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Camundongos , Microglia , Doenças Neuroinflamatórias , Proteína-Arginina N-Metiltransferases/metabolismo , Traumatismo por Reperfusão/metabolismo
10.
Gene ; 747: 144684, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32311412

RESUMO

PRMT8 is a neuron-specific protein arginine methyltransferase in vertebrates. From data mining, we found a novel prmt8e6+43 splicing variant with a 43-nucleotide (nt) extension at the 5' of exon 6 in chicken. RT-PCR analyses confirmed the existence of two splicing variants but also detected a third upper signal. The triplet pattern detected in chicken suggests that one strand from the prmt8e6+43 transcript and one strand from the regular splicing products form a heteroduplex with a bulb conformation and the two transcripts are of similar abundance. One short plus one faint upper heteroduplex signal detected in mouse and human indicate that the level of the variant is much less than the normal one in mammals. The relative expression of the normal and prmt8e6+43 variants in different species can be inferred from the reads of intron 5 that contains the 43-nt extension or not in the RNA-seq data of NCBI Gene database. The results of the analyses showed that the prmt8e6+43 variant is relatively abundant in birds but much less or even not detected in mammalian species. As conserved intron 5 sequences and evidences of alternative splicing (AS) are detected in elephant shark, a cartilaginous fish with the slowest-evolving genome, we propose that the prmt8e6+43 variant is present in the common ancestor of jawed vertebrates. The prmt8e6+43 variant includes a premature termination codon and thus should encode a truncated PRMT8 with deletion from the dimerization arm. Western blot analyses showed very weak low-molecular-weight signals in chicken, which might be the C-terminal truncated PRMT8. Why avian species maintain high RNA but not protein levels of the prmt8e6+43 variant and whether the evolutionary conserved sequence and AS might regulate PRMT8 expression require further investigation.


Assuntos
Processamento Alternativo/genética , Aves/genética , Variação Genética , Íntrons/genética , Proteína-Arginina N-Metiltransferases/genética , Sítios de Splice de RNA/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas/genética , Humanos , Camundongos , Nucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA