Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Environ Res ; 252(Pt 3): 119080, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714220

RESUMO

Coastal cities are major centers of economic activity, which at the same time has negative consequences for the environment. The present study aimed to determine the concentrations and sources of PTEs in the urban soils of Taganrog, as well as to assess the ecological and human health risks. A total of 47 urban and 5 background topsoils samples were analyzed by ICP-MS and ICP-AES. A significant excess of Cu, Zn, and Sb was noted in urban soils compared to the upper continental crust and average world-soil (1.7-2.9 times). Statistical analysis showed that the elements in soils were of geogenic, mixed and anthropogenic origin. According to the single pollution index (PI), the greatest danger of soil pollution was represented by anthropogenic elements, namely Cu, W, Pb, Zn, Cd, and Sn, the levels of which were increased in residential and industrial areas. The median contents of As, Mn, Cr, Sr, Mo, Sb, Cu, W, Pb, and Zn were 1.1-2.1 times higher, while Cd and Sn were 2.5 folds higher in the urban soils compared to the background ones. The total pollution index (ZC) showed that only 15% of the soils had high level of pollution, which is typical for the industrial areas. Overall ecological risks were negligible or low in 92% of soils, and were mainly due to elevated levels of Cu, Zn, As, and Pb. Non-carcinogenic risks to humans were mainly related to exposure to La and Pb. The hazard index (HI) values for all PTEs were less than ten, indicating that overall non-carcinogenic risk for adults and children was low-to-moderate and, moderate, respectively. The total carcinogenic risk (TCR) exceeded threshold and corresponded to low risk, with Pb, As, and Co being the most important contributors. Thus, the industrial activities of Taganrog is the main source of priority pollutants.


Assuntos
Cidades , Monitoramento Ambiental , Poluentes do Solo , Medição de Risco , Poluentes do Solo/análise , Humanos , Solo/química , Metais Pesados/análise
2.
Ecotoxicol Environ Saf ; 279: 116479, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768539

RESUMO

The concentration of potentially toxic elements (PTEs) in soils of different land-use types varies depending on climatic conditions and human. Topsoil samples were collected in Northwest China to investigate PTE pollution and risk in different land uses, and thereby estimate the risk of various pollution sources. The results showed that human activity had an impact on PTE concentrations in the study area across all land use types, with farmland, grassland, woodland, and the gobi at moderate pollution levels and the desert at light pollution levels. Different PTE sources pose different risks depending on the land-use type. Apart from deserts, children are exposed to carcinogenic risk from a variety of sources. A mixed natural and agricultural source was the main source of public health risk in the study area, contributing 38.7% and 39.0% of the non-carcinogenic and 40.7% and 35.5% of the carcinogenic risks, respectively. Monte Carlo simulations showed children were at a higher health risk from PTEs than adult s under all land uses, which ranked in severity as farmland > woodland > grassland > gobi > desert. As and Ni has a higher probability of posing both a non-carcinogenic and a carcinogenic risk to children. Sensitivity analysis showed that the contribution of parameters to the assessment model of PTEs exhibited the following contribution pattern: concentration > average body weight > ingestion rate > other parameters. The PTEs affecting the risk assessment model were not common among different land use types, where the importance distribution pattern of each parameter was basically the same in woodland, grassland, and farmland, and Ni contributed the most to carcinogenic risk. However, Cr contributed the most to the carcinogenic risk in the desert and gobi.


Assuntos
Monitoramento Ambiental , Método de Monte Carlo , Poluentes do Solo , Solo , China , Medição de Risco , Poluentes do Solo/análise , Humanos , Solo/química , Agricultura , Criança , Fazendas , Clima Desértico , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise
3.
Environ Geochem Health ; 46(10): 409, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215896

RESUMO

Due to water shortages and the potential impact of Ethiopia's new dam on the Nile River, Egypt is seeking new water resources. This study assesses the drinking water quality and associated risks from potentially toxic elements (PTEs) in the Quaternary aquifer (QA) in Beni-Suef, Egypt. Using a comprehensive approach, including PHREEQC geochemical modeling, ionic ratios, multivariate statistical analyses, and the integrated weight water quality index (WQI), the study evaluated the sources of ion contamination and the mixing of Nile water with QA. Various indices, such as the Heavy Metal Pollution Index (HPI), ecological Risk Index (RI), Hazard Quotient (HQ), and Hazard Index (HI), were used to assess ecological and health risks. Monte Carlo simulations provided probabilistic assessments of non-carcinogenic risks for adults and children. GIS tools were used to map risk indices, identifying the most deteriorated locations for sustainable management. The hydrochemical analysis revealed water facies including Na-Cl, Ca-Mg-HCO3, and mixed types, influenced by carbonate dissolution, ion exchange, and silicate weathering. Contamination sources, particularly in the north and south, were linked to agricultural activities, irrigation return flow, municipal waste, and evaporation. The WQI indicated that 10.14% of samples were extremely poor, 21.7% were poor, 26% were medium, and 42% were good to excellent. PTE contamination varied, with HPI values indicating good water quality in the central area in 53.6% of the collected samples (HPI < 30), but contamination in the north and south is high (HPI > 51). Ecological Risk Index values were below the threshold in 100% of samples (RI < 30), confirming water safety regarding PTEs. In comparison, for hazard index (HI) through oral/ingestion, adults exhibited HI values ranging from 0.012 to 2.16, while children showed higher values, ranging from 0.045 to 8.25. However, the hazard index for oral/ingestion exceeded safe limits in the north and south (HI oral > 1), posing non-carcinogenic risks. Monte Carlo simulations revealed significant risks from oral exposure to manganese (HQ oral > 1), particularly in El-Wasta and El-Fashn, necessitating further treatment and management.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Humanos , Egito , Monitoramento Ambiental/métodos , Método de Monte Carlo , Água Subterrânea/química , Metais Pesados/análise , Água Potável/química , Simulação por Computador
4.
Environ Monit Assess ; 196(3): 278, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367088

RESUMO

The current study investigated wild plant resources and health risk assessment along with northern Pakistan's mafic and ultramafic regions. Ethnobotanical data was collected through field visits and semi-structured questionnaire surveys conducted from local inhabitants and healers. Six potentially toxic elements (PTEs) such as lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), manganese (Mn), and zinc (Zn) were extracted with acids and analyzed using atomic absorption spectrophotometer (AAS, Perkin Elmer-7000) in nine selected wild medicinal plants. Contamination factor (CF), pollution load index (PLI), estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) were used to determine the health risk assessment of the studied medicinal plants. The results showed that the selected medicinal plants were used for the treatments of cough, joint swelling, cardiovascular disorders, toothaches, diabetes, and skin pimples by the local inhabitants due to their low-cost and easy accessibility. The concentrations of Pb (3.4-53 mg kg-1), Cd (0.03-0.39 mg kg-1), Ni (17.5-82 mg kg-1), Cr (29-315 mg kg-1), Mn (20-142 mg kg-1), and Zn (7.4-64 mg kg-1) in the studied medicinal plants were found above the safe limits (except Zn) set by WHO/FAO/USEPA (1984/2010). The Pb contamination factor was significantly (p < 0.05) higher in A. modesta (7.84) and D. viscosa (6.81), and Cd contamination factor was significantly higher in C. officinalis (26.67), followed by A. modesta (8.0) mg kg-1. Based on PTE concentrations, the studied plants are considered not suitable for human consumption purposes. Pollution load index values for A. modesta, A. barbadensis, A. caudatus, A. indica, C. procera (2.93), D. viscosa (2.79), and C. officinalis (2.83), R. hastatus (3.12), and Z. armatum were observed as 1.00, 2.80, 2.29, 2.29, 2.93, 2.79, 2.83, 3.12 and 2.19, respectively. Hazard index values were in order of R. hastatus (1.32 × 10-1) ˃ C. procera (1.21 × 10-1) ˃ D. viscosa (1.10 × 10-1) ˃ A. caudatus (9.11 × 10-2) ˃ A. barbadensis (8.66 × 10-2) ˃ Z. armatum (7.99 × 10-2) ˃ A. indica (6.87 × 10-2) ˃ A. modesta (5.6 × 10-2) ˃ C. officinalis (5.42 × 10-2). The health risk index values suggested that consumption of these plants individually or in combination would cause severe health problems in the consumers. Pearson's correlation results showed a significant correlation (p ≤ 0.001) between Zn and Mn in the studied medicinal plants. The current study suggests that wild medicinal plants should be adequately addressed for PTEs and other carcinogenic pollutants before their uses in the study area. Open dumping of mining waste should be banned and eco-friendly technology like organic amendments application should be used to mitigate PTEs in the study area.


Assuntos
Porcelana Dentária , Ligas Metalo-Cerâmicas , Metais Pesados , Plantas Medicinais , Poluentes do Solo , Titânio , Humanos , Cádmio , Metais Pesados/análise , Monitoramento Ambiental/métodos , Paquistão , Chumbo , Medição de Risco , Poluentes do Solo/análise
5.
Environ Monit Assess ; 196(5): 468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656463

RESUMO

In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais Pesados , Material Particulado , Folhas de Planta , Folhas de Planta/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Material Particulado/análise , Mangifera/química , Bangladesh , Psidium/química
6.
Environ Monit Assess ; 196(10): 947, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289217

RESUMO

Microplastics (MPs) are emerging and ubiquitous contaminants, known to accumulate in river sediments. In many developing nations, the absence of policies for managing plastic waste puts the inland river ecosystems at risk of excessive abundance of plastics and MPs. However, only limited studies have reported MPs in river environments in these countries. The current study therefore examined the abundance and nature of MPs and potentially toxic elements (PTEs) in the sediments of the Odo-Ona and Ogun Rivers in Southwest Nigeria. MPs were extracted from the sediments using the density separation method and categorized according to their size, colour and shapes. The range of MP abundances found in the Ogun River sediments was 66.6 ± 12.2 to 311 ± 20.8 particles/kg, while that of the Odo-Ona River ranged from 133 ± 50 to 433 ± 100 particles/kg. The MPs polymer analyses revealed the presence of polyethylene (PE), polypropylene (PP) and polyamide (PA) particles in the sediments. PE was most abundant in the two rivers, constituting 72.8% and 59.7% of MPs (with 0.5 - 5 mm size), recovered from the Odo-Ona and Ogun Rivers, respectively. High concentrations of Cr and Pb with ranges of 10.3 - 48.3 and 10.1 - 211 mg/kg, respectively, were detected in the sediments and were associated with anthropogenic effects. This study reveals the impact of indiscriminate waste dumping on the water bodies, and calls for strict enforcement of environmental laws in the country.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Rios , Poluentes Químicos da Água , Nigéria , Rios/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Plásticos/análise
7.
Environ Monit Assess ; 196(4): 355, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466496

RESUMO

Vermicompost is a substantial source of nutrients, promotes soil fertility, and maintains or increases soil organic matter levels. Potentially toxic elements (PTEs) in vermicompost impact on nitrification activity. However, it is yet unknown how vermicompost affects nitrifying bacteria and archaea, comammox Nitrospira inopinata (complete ammonia oxidizers), net nitrification rates (NNRs), and PTEs. The effects of vermicompost application on NNRs, potential nitrification rates (NPs), PTEs, and the abundances of comammox N. inopinata bacteria, nitrite-oxidizing bacteria (NOB), and ammonia-oxidizing bacteria (AOB)/archaea (AOA) were studied. NNRs and NPs were significantly higher (p < 0.05) in fresh cow-dung vermicompost (stored for 40 days) as compared with other organic manure. The level of PTEs (Cu2+, Fe2+, Pb2+, Cd2+, and Zn2+) was significantly lower (p < 0.05) in vermicompost as compared with compost of waste material with Trichoderma and cow dung. Comammox N. inopinata, NOB, AOB, and AOA were significantly higher (p < 0.05) in stored cow-dung vermicompost (more than 1 year) as compared with other organic manure. The results of the scatterplot matrix analysis suggested that Fe2+, total nitrogen (TN), soil organic carbon (SOC), and total carbon (TC) were linearly correlated (p < 0.001) with NNRs and NPs in vermicompost and organic manure. Similarly, comammox N. inopinata bacteria, NOB, AOB, and AOA were linearly correlated (p < 0.001) with NNR and NP. These results indicated that vermicompost promoted nitrification activity by increasing microbial diversity and abundance, supplying nutrients and organic matter for microbial growth, and facilitating complex microbial interactions. It may be concluded that the influence of vermicompost, which played a great role in PTE concentration reduction, increased chemical, and biological properties, increased the growth rate of nitrifying bacteria/archaea and the nitrogen cycle.


Assuntos
Archaea , Nitrificação , Esterco , Amônia , Carbono , Oxirredução , Solo/química , Filogenia , Microbiologia do Solo , Monitoramento Ambiental , Bactérias , Nitritos
8.
Ecotoxicol Environ Saf ; 264: 115422, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660529

RESUMO

Agricultural soil pollution with potentially toxic trace elements (PTEs) has emerged as a significant environmental concern, jeopardizing food safety and human health. Although, conventional remediation approaches have been used for PTEs-contaminated soils treatment; however, these techniques are toxic, expensive, harmful to human health, and can lead to environmental contamination. Nano-enabled agriculture has gained significant attention as a sustainable approach to improve crop production and food security. Silicon nanomaterials (SiNMs) have emerged as a promising alternative for PTEs-contaminated soils remediation. SiNMs have unique characteristics, such as higher chemical reactivity, higher stability, greater surface area to volume ratio and smaller size that make them effective in removing PTEs from the environment. The review discusses the recent advancements and developments in SiNMs for the sustainable remediation of PTEs in agricultural soils. The article covers various synthesis methods, characterization techniques, and the potential mechanisms of SiNMs to alleviate PTEs toxicity in plant-soil systems. Additionally, we highlight the potential benefits and limitations of SiNMs and discusses future directions for research and development. Overall, the use of SiNMs for PTEs remediation offers a sustainable platform for the protection of agricultural soils and the environment.


Assuntos
Nanoestruturas , Oligoelementos , Humanos , Silício , Solo , Agricultura
9.
Ecotoxicol Environ Saf ; 261: 115108, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285674

RESUMO

Wood vinegar (WV) is a renewable organic compound, possessing characteristics such as high oxygenated compound content and low negative impact on soil. Based on its weak acid properties and complexing ability to potentially toxic elements (PTEs), WV was used to leach Ni, Zn, and Cu contaminated soil in electroplating sites. In addition, the response surface methodology (RSM) based on the Box-Behnken design (BBD) was established to clarify the interaction between each single factor, and finally completed the risk assessment of the soil. The amounts of PTEs leached from the soil climbed with the increase of WV concentration, liquid-solid ratio, and leaching time, while they surged with the decrease of pH. Under optimal leaching circumstances (the concentration of WV= 100 %; washing time= 919 min; pH= 1.00), the removal rates of Ni, Zn, and Cu could reach 91.7 %, 57.8 %, and 65.0 %, respectively, and the WV-extracted PTEs were mainly from the Fe-Mn oxides fraction. After leaching, the Nemerow integrated pollution index (NIPI) decreased from an initial value of 7.08 (indicating severe pollution) to 0.450 (indicating no pollution). The potential ecological risk index (RI) dropped from 274 (medium level) to 39.1 (low level). Additionally, the potential carcinogenic risk (CR) values reduced by 93.9 % for both adults and children. The results revealed that the washing process significantly reduced the pollution level, potential ecological risk, and health risk. Coupled with FTIR and SEM-EDS analysis, the mechanism of WV removal of PTEs could be explained from three aspects: acid activation, H+ ion exchange, and functional group complexation. In summary, WV is an eco-friendly and high-efficiency leaching material for the remediation of PTEs polluted sites, which will maintain soil function and protect human health.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Humanos , Metais Pesados/análise , Galvanoplastia , Poluentes do Solo/análise , Medição de Risco , Solo/química , Zinco/análise
10.
Drug Chem Toxicol ; : 1-9, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017136

RESUMO

Coffee is the most popular beverage after water in the world, which has an important role in health as a result of various minerals and vitamins but it may be pollution source of potentially toxic elements (PTEs) that can threate the health. Thus, the current study intended to detect the level of PTEs such as Cadmium (Cd), Copper (Cu), Lead (Pb), Nickel (Ni), Znc (Zn) and Iron (Fe), in various coffee and coffee-based products (powder, ground, processed, infusion and bean). Considering the databases of Scopus, Google scholar, PubMed, and Web of Science, the concentration of PTEs in coffee and coffee-based products was retrieved and meta-analyzed. Additionally, the non-carcinogenic risks in terms of total hazard quotient (TTHQ) were assessed using Monte Carlo simulated (MCS) model. According to the findings of 23 articles, the ranking of metal concentration in different coffees was Fe > Zn > Cu> Ni > Pb > Cd in powder, Fe > Cu > Zn> Ni in ground, Fe > Zn > Ni> Cu> Pb > Cd in processed and infusion and Fe > Zn > Ni> Cs > Pb in bean. Moreover, based on WHO regions, the highest concentrations of Cd and Pb (0.742 mg/kg) were related to the South-East Asia Region (SEARO) and European region (EURO) respectively. However, the highest concentrations of Fe (81.161 mg/kg), Zn (33.392 mg/kg), Cu (9.408 mg/kg), and Ni (18.064 mg/kg) were related to Pan American health organization (PAHO), PAHO, PAHO and Eastern Mediterranean Region (EMRO), respectively. On the other hand, the risk pattern was different in different countries. Moreover, consumers in some countries were not at significant non-carcinogenic risks because of ingestion of PTEs via coffee and consumption of coffee-based products.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37646985

RESUMO

Early childhood is a heightened risk period for exposure to potentially traumatic events (PTEs) and a critical period for the development of foundational self-regulatory competencies that have potential cascading effects on future socioemotional functioning. This cross-sectional study examined associations between PTE exposure and socioemotional and adaptive functioning, and self-regulatory skills, in a community-based sample of 280 primarily Black and Latinx 3-5-year-olds. Results supported direct relations between PTE exposure and socioemotional and adaptive functioning. Attentional regulation was associated with PTEs and internalizing behaviors, externalizing behaviors, and adaptive behaviors. There was also a significant association of emotional regulation on the relationship between PTEs and internalizing and externalizing behaviors, but not adaptive functioning. Findings have implications for early intervention and educational and public policy, including the importance of scaffolding the development of self-regulatory skills among preschoolers with high PTE exposure.

12.
J Environ Manage ; 339: 117938, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080097

RESUMO

Low-carbon and high-efficiency binder is desirable for sustainable treatment of municipal solid waste incineration fly ash (MSWI FA). In this study, CaO or MgO was used to activate ground granulated blast furnace slag (GGBS) to form calcium silicate hydrate and magnesium silica hydrate gel for stabilization/solidification of hazardous MSWI FA. Experimental results showed that potential toxic elements (PTEs), such as Pb and Zn, significantly inhibited the formation of reaction products in CaO-GGBS system due to the complexation between Ca(OH)2 and PTEs, whereas PTEs only had insignificant inhibition on transformation from MgO to Mg(OH)2 in MgO-GGBS system, resulting in lower leachabilities of PTEs and higher mechanical strengths. Stabilization/solidification experiments demonstrated that MSWI FA (70 wt%) could be recycled by MgO-GGBS binder (30 wt%) into blocks with desirable 28-day compressive strengths (3.9 MPa) and PTEs immobilization efficiencies (99.8% for Zn and 99.7% for Pb). This work provides mechanistic insights on the immobilization mechanisms of PTEs in CaO/MgO-GGBS systems and suggests a promising MgO-GGBS binder for low-carbon treatment of MSWI FA.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Eliminação de Resíduos/métodos , Material Particulado , Carbono , Óxido de Magnésio , Chumbo , Metais Pesados/análise , Incineração/métodos , Resíduos Sólidos/análise
13.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175212

RESUMO

Tea (Camellia sinensis) is the second most consumed beverage worldwide, playing a key role in the human diet. Tea is considered a healthy drink, as its consumption has been linked to a lower risk of cardiovascular disease-related events and death, stroke, metabolic syndrome and obesity. However, several studies have shown that C. sinensis is a hyperaccumulator of Al and other elements that are considered potentially toxic. In the present study, the contents of 15 elements (both essential and toxic) were determined for the first time in tea leaves collected in tea gardens located in six different European countries and processed to provide black and green tea. The results showed that Al was the major toxic element detected, followed by Ni, Cr, Pb, As, Cd, Ag, and Hg. Essential elements were detected in the order of Mn, Fe, Zn, Cu, Co, and Se. Statistically significant correlations (p < 0.05) were found in the distribution of some elements, highlighting mechanisms of synergic or antagonist interaction. Multivariate analysis revealed that geographical origin was the main driver in clustering the samples, while the different treatment processes (black or green) did not significantly affect the contents of elements in the leaves. The estimation of potential non-carcinogenic risk revealed no risk for the consumption of European teas for consumers in terms of potentially toxic elements.


Assuntos
Camellia sinensis , Mercúrio , Humanos , Chá , Bebidas , Medição de Risco
14.
Environ Geochem Health ; 45(6): 3199-3214, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36194302

RESUMO

The present study aims to characterize sediments textural, geochemical and mineralogical composition used in a SPA for pelotherapy applications. Six samples were collected in two areas of an open-air saline SPA, a former saltpan in Ria de Aveiro (Portugal). Sampling areas are predominantly composed by recent alluvium that had been affected by chemical industrial effluents for over 50 years. Samples < 2000, 63, and 2 µm fractions were analyzed by X-ray Diffraction (XRD) and X-ray Fluorescence (XRF), for identification of mineral phases and chemical composition. SEM analysis was used for individual particles morphological characterization and chemical semi-quantification. Texture, mineral phases and chemical composition showed the influence of SPA pond beneficiation works. The two SPA areas revealed distinct mineral phases, one with higher quartz content, and the other with higher halite content, consistent with their environmental conditions. Illite constituted the most abundant mineral phase of the clay fraction. Preliminary results suggested concentrations of potential toxic elements (e.g., As, Cd) above reference values, representing a risk to the ecosystem and humans.


Assuntos
Peloterapia , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/análise , Portugal , Minerais/análise , Monitoramento Ambiental
15.
Environ Geochem Health ; 45(1): 151-170, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34677729

RESUMO

Mining affects the environment, particularly through the persistence of accumulation of tailings materials; this is aggravated under tropical climatic conditions, which favours the release of potentially toxic elements (PTEs) bioavailable to the local flora and fauna and supposing a risk to human health. The Remance gold mine (Panamá), exploited intermittently for more than 100 years, and has remained derelict for over 20 years. Within the area live farmers who carry out subsistence agriculture and livestock activities. The objective of this study has been to study the transference of PTEs in the local agricultural soil-plants system, with the goal of identifying their bioavailability to perform a human risk assessment. The results obtained of the Bioaccumulation coefficient in local plants show very weak to strong absorption of As (< 0.001-1.50), Hg (< 0.001-2.38), Sb (0.01-7.83), Cu (0.02-2.89), and Zn (0.06-5.32). In the case of Cu in grass (18.3 mg kg-1) and plants (16.9 mg kg-1) the concentrations exceed the maximum authorised value in animal nutrition for ruminants (10 mg kg-1). The risk to human health for edible plants exceeds the non-carcinogenic risk for rice, corn, cassava, and tea leaves for Sb (HQ 19.450, 18.304, 6.075, 1.830, respectively), the carcinogenic risk for Cu (CR = 2.3 × 10-3, 7.7 × 10 -4, 1.1 × 10-3, 1.0 × 10-3, respectively), and the carcinogenic risk for As in rice, corn and tea leaves (CR = 8 × 10-5, 3 × 10-5, 3 × 10-5, respectively). Urgent measures are needed to alleviate these effects.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Metais Pesados/análise , Disponibilidade Biológica , Monitoramento Ambiental/métodos , Plantas , Solo , Medição de Risco/métodos , Chá , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
16.
Environ Geochem Health ; 45(9): 6835-6852, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36482137

RESUMO

As one of the most important coal-producing provinces of China, Shanxi Province has been concerned about soil potentially toxic elements (PTEs) contamination in recent years. The study aimed to determine the status and sources of PTEs contamination and evaluate the quality of the soil ecology. This study investigated the degree of 13 PTEs contamination. The sources and contributions of PTEs were traced by the absolute principal component score followed by a multiple linear regression model (APCS-MLR). And the status of the soil ecosystem was verified by evaluating the soil nematode community around the coal mining areas in Jinzhong. The results showed that the mean PTEs concentration of 5 trace elements were higher than the background values of Shanxi, and safe to considerable was indicated by the pollution and ecological risk values. Soil Hg was the most contaminated element, followed by Cd. The distribution of PTEs was determined by coal mining activities (44.72%) followed by agricultural practice (32.37%) and coal transportation (21.37%). The nematode genera Acrobeloides (4.01%), Aphelenchus (20.30%), Meloidogyne (11.95%) and Aporcelaimus (2.74%) could be regarded as bioindicators of soil PTEs contamination by their tolerance. Concentrations of soil Cr, Mn, Ti and Cd showed remarkable influences on the total nematode abundance, maturity index, enrichment index, structural index, Shannon-Wiener diversity index and Pielou index of soil nematode. It is an appropriate method to evaluate the status of soil PTEs contamination combining the response of a single nematode genus and the nematode community evaluation index.


Assuntos
Metais Pesados , Nematoides , Poluentes do Solo , Animais , Solo/química , Metais Pesados/toxicidade , Metais Pesados/análise , Ecossistema , Fazendas , Cádmio , Monitoramento Ambiental/métodos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco/métodos , China , Carvão Mineral
17.
Environ Monit Assess ; 195(5): 570, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059862

RESUMO

This study was undertaken with the aim of selecting one or more lichen species that are the most suitable for transplant-based surveys of air pollution in Tunisia, in areas where the local native lichen vegetation is scanty or missing at all. To this purpose, four epiphytic (tree inhabiting) lichen species (Evernia prunastri, Flavoparmelia caperata, Parmotrema perlatum, Ramalina farinacea) were collected from the Babouch forests, a remote and unpolluted area of NW Tunisia, and analyzed for their content of potentially toxic elements (PTEs), namely Al, As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, and Zn, by ICP-MS. Moreover, also the physiological status of the lichen samples was evaluated by measuring their chlorophyll content, photosynthetic efficiency, and spectral reflectance. The results indicated a remarkable contribution of airborne soil and dust particles to the total PTE content, especially for the foliose species F. caperata and P. perlatum. The fruticose lichens E. prunastri and R. farinacea had a lower and similar content of PTEs, and hence were regarded as more suitable to be used in transplant studies, since are able to detect even minimal accumulation amounts. All lichen species were healthy, as emerged from the analysis of physiological parameters.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Líquens , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Tunísia , Poluição do Ar/análise , Metais Pesados/análise
18.
Environ Monit Assess ; 195(11): 1327, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847320

RESUMO

In China, coal provides about 56.8% of the energy. Most of China's coal mines are shaft mines, which cause the surface to collapse and crack during the mining process. The soil near the cracks changes its physicochemical properties due to the altered stress conditions. This will affect the distribution of PTEs in the soil. We collected 18 samples from a selected crack in the abandoned land. The pH, Eh, and PTE and their fractions of the samples were determined. With the test results, we understand the distribution characteristics of pH, Eh, PTEs, and their fractions at the cracks. Meanwhile, we explored the key factors that contribute to this distribution. It was determined that crack decreases surface soil pH while increasing Eh. The total amount of 7 PTEs is higher in the bottom soil of the main crack and 2 m away from the main crack. The content of reducible fractions of PTEs increases with the increase of soil Eh. The oxidizable and residual fractions of PTEs adsorbed to the clay particles migrate to and enrich the deeper layers of the main crack. This study emphasizes the effect of crack generation on the distribution of PTEs in soil. It provides insights to describe the distribution of PTE throughout the full life cycle of crack.


Assuntos
Minas de Carvão , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Mineração , Solo/química , China , Carvão Mineral , Medição de Risco
19.
Environ Monit Assess ; 195(6): 793, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261537

RESUMO

This study evaluated the effects of neem seed biochar, poultry manure, and their combinations at varying rates of 15 and 25% (w/w) on potentially toxic elements (PTEs) in soils. Afterward, the suitability of Manihot esculenta and Jatropha curcas in removing Cd, As, Zn, Pb, and Hg from mine spoils were appraised in a 270-day outdoor pot experiment. Using ICP-Mass Spectrometry, the elemental contents of target PTE in the shoot, root, and soil specimens were determined for each treatment. The obtained average values were further subjected to a nonparametric test of samples using IBM SPSS Statistic 29. The applied organic amendments resulted in significant differences p < 0.05 in PTE availability for plant uptake after the Independent-Samples Kruskal-Wallis Test was made. Nonetheless, applying a 25% (w/w) mixture of neem seed biochar and poultry manure was efficient in immobilizing more PTEs in soils which caused lower PTEs presence in plants. Organic amendments further significantly enhanced the fertility of the mine soils leading to about a 6- 25.00% increase in the biomass yield (p < 0.05) of both plants. No significant difference (p > 0.05) was however observed between the phytoremediation potentials of both plants after the Independent-Sample Mann-Whitney U test. Even that, Manihot esculenta was averagely more efficient in PTE uptake than Jatropha curcas. Larger portions of the bioaccumulated PTEs were stored in the roots of both plants leading to high bioconcentration factors of 1.94- 2.47 mg/kg and 1.27- 4.70 mg/kg, respectively, for Jatropha curcas and Manihot esculenta. A transfer factor < 1 was achieved for all PTEs uptake by both plants and indicated their suitability for phytostabilization. Techniques for easy cultivation of root-storing PTEs are required to enhance their large-scale use as their biomass could further be used in clean energy production.


Assuntos
Jatropha , Manihot , Metais Pesados , Poluentes do Solo , Animais , Biodegradação Ambiental , Metais Pesados/análise , Esterco/análise , Poluentes do Solo/análise , Solo/química , Aves Domésticas , Monitoramento Ambiental , Sementes/química
20.
Environ Monit Assess ; 195(3): 438, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862255

RESUMO

Untreated wastewater is routinely used for agricultural activities in water-stressed regions, thereby causing severe ecological risks by various pollutants. Hence, management strategies are needed to cope with the environmental issues related to wastewater use in agriculture. This pot study evaluates the effect of mixing either freshwater (FW) or groundwater (GW) with sewage water (SW) on the buildup of potentially toxic elements (PTEs) in soil and maize crop. Results revealed that SW of Vehari contains high levels of Cd (0.08 mg L-1) and Cr (2.3 mg L-1). Mixing of FW and GW with SW increased soil contents of As (22%) and decreased Cd (1%), Cu (1%), Fe (3%), Mn (9%), Ni (9%), Pb (10%), and Zn (4%) than SW "alone" treatment. Risk indices showed high-degree of soil-contamination and very-high ecological risks. Maize accumulated considerable concentrations of PTEs in roots and shoot with bioconcentration factor > 1 for Cd, Cu, and Pb and transfer factor > 1 for As, Fe, Mn, and Ni. Overall, mixed treatments increased plant contents of As (118%), Cu (7%), Mn (8%), Ni (55%), and Zn (1%), while decreased those of Cd (7%), Fe (5%), and Pb (1%) compared to SW "alone" treatments. Risk indices predicted possible carcinogenic risks to cow (CR 0.003 > 0.0001) and sheep (CR 0.0121 > 0.0001) due to consumption of maize fodder containing PTEs. Hence, to minimize possible environmental/health hazards, mixing of FW and GW with SW can be an effective strategy. However, the recommendation greatly depends on the composition of mixing waters.


Assuntos
Solo , Águas Residuárias , Bovinos , Feminino , Animais , Ovinos , Zea mays , Cádmio , Chumbo , Monitoramento Ambiental , Água Doce , Água , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA