Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2301338120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399374

RESUMO

Recent fossil discoveries in Western Amazonia revealed that two distinct anthropoid primate clades of African origin colonized South America near the Eocene/Oligocene transition (ca. 34 Ma). Here, we describe a diminutive fossil primate from Brazilian Amazonia and suggest that, surprisingly, a third clade of anthropoids was involved in the Paleogene colonization of South America by primates. This new taxon, Ashaninkacebus simpsoni gen. et sp. nov., has strong dental affinities with Asian African stem anthropoids: the Eosimiiformes. Morphology-based phylogenetic analyses of early Old World anthropoids and extinct and extant New World monkeys (platyrrhines) support relationships of both Ashaninkacebus and Amamria (late middle Eocene, North Africa) to the South Asian Eosimiidae. Afro-Arabia, then a mega island, played the role of a biogeographic stopover between South Asia and South America for anthropoid primates and hystricognathous rodents. The earliest primates from South America bear little adaptive resemblance to later Oligocene-early Miocene platyrrhine monkeys, and the scarcity of available paleontological data precludes elucidating firmly their affinities with or within Platyrrhini. Nonetheless, these data shed light on some of their life history traits, revealing a particularly small body size and a diet consisting primarily of insects and possibly fruit, which would have increased their chances of survival on a natural floating island during this extraordinary over-water trip to South America from Africa. Divergence-time estimates between Old and New World taxa indicate that the transatlantic dispersal(s) could source in the intense flooding events associated with the late middle Eocene climatic optimum (ca. 40.5 Ma) in Western Africa.


Assuntos
Cebidae , Platirrinos , Animais , Filogenia , Brasil , Haplorrinos , Fósseis , Roedores , Evolução Biológica
2.
J Hum Evol ; 185: 103452, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935595

RESUMO

Ekgmowechashala is a poorly documented but very distinctive primate known only from the late early Oligocene (early Arikareean) of western North America. Because of its highly autapomorphous dentition and spatiotemporal isolation, the phylogenetic and biogeographic affinities of Ekgmowechashala have long been debated. Here, we describe the oldest known fossils of Ekgmowechashala from the Brown Siltstone Beds of the Brule Formation, White River Group of western Nebraska. We also describe a new ekgmowechashaline taxon from the Nadu Formation (late Eocene) in the Baise Basin of Guangxi Zhuang Autonomous Region in southern China. Phylogenetic analysis suggests that North American Ekgmowechashala and the new Chinese taxon are sister taxa that are nested within a radiation of southern Asian adapiforms that also includes Gatanthropus, Muangthanhinius, and Bugtilemur. The new Chinese ekgmowechashaline helps fill the considerable disparity in dental morphology between Ekgmowechashala and more primitive ekgmowechashalids known from southern Asia. Our study underscores the fundamental role of southern Asia as a refugium for multiple primate clades during the cooler and drier climatic regime that prevailed after the Eocene-Oligocene transition. The colonization of North America by Ekgmowechashala helps define the beginning of the Arikareean Land Mammal Age and corresponds to an example of the Lazarus effect, whereby a taxon (in this case, the order Primates) reappears suddenly in the fossil record after a lengthy hiatus.


Assuntos
Fósseis , Primatas , Animais , Filogenia , China , Nebraska , Primatas/anatomia & histologia , América do Norte , Mamíferos
3.
Ann Bot ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37076271

RESUMO

BACKGROUND AND AIMS: The prevailing view from the areocladogenesis of molecular phylogenies is that the iconic South African Cape Proteaceae (subfamily Proteoideae) arrived from Australia across the Indian Ocean in the Upper Cretaceous (100‒65 million years ago, Ma). Since fossil pollen indicates that the family probably arose in North-West Africa during the early Cretaceous, an alternative view is that it migrated to the Cape from North-Central Africa. The plan therefore was to collate fossil pollen records throughout Africa to determine if they are consistent with an African (para-autochthonous) origin for the Cape Proteaceae, and to seek further support from other paleo-disciplines. METHODS: Palynology (identity, date and location of records), molecular phylogeny and chronogram preparation, biogeography of plate tectonics, and paleo-atmospheric and ocean circulation models. KEY RESULTS: Our collation of the rich assemblage of Proteaceae palynomorphs stretching back to 107 Ma (Triorites africaensis) in North-West Africa showed its progressive overland migration to the Cape by 75‒65 Ma. No key palynomorphs recorded in Australia-Antarctica have morphological affinities with African fossils but specific clade assignment of the preMiocene records is not currently possible. The Cape Proteaceae encompass three molecular-based clades (tribes) whose most-recent apparent ancestors are sisters to those in Australia. However, our chronogram shows that the major Adenanthos/Leucadendron-related clade, originating 54‒34 Ma, would have 'arrived' too late as species with Proteaceae affinities were already present ~20 My earlier. The Franklandia/Protea-related clade arose 118‒81 Ma so its distinctive pollen should have been the foundation for the scores of palynomorphs recorded at 100‒80 Ma but it was not. Also, the prevailing winds and ocean currents trended away from South Africa rather than towards, as the 'out-of-Australia' hypothesis requires. Based on the evidence assembled here, we list three points favouring an Australian origin and nine against; four points favouring an Antarctic origin and seven against; and nine points favouring a North-Central African origin and three against. CONCLUSIONS: We conclude that a gradual migration of the Proteaceae from North-Central Africa southeast→south→southwest to the Cape and surrounds occurred via adaptation and speciation during the period 90‒70 Ma. We caution that incorrect conclusions may be drawn from literal interpretations of molecular phylogenies that neglect the fossil record and do not recognize the possible confounding effects of selection under matched environments leading to parallel evolution and extinction of bona fide sister clades.

4.
J Hum Evol ; 170: 103238, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35988384

RESUMO

Small mammals (insectivores, rodents, and lagomorphs) from Dmanisi are here reviewed for the first time and used as a tool for paleoenvironmental proxies. The small mammal faunal list is composed of shrews (Beremendia fissidens, cf. Beremendia minor, Crocidura kornfeldi), hamsters (Cricetulus sp., Allocricetus bursae), gerbils (Parameriones aff. obeidiyensis), murids (Apodemus cf. atavus), arvicolids (Mimomys pliocaenicus, Mimomys aff. pusillus), and pikas (Ochotona sp.). A paleoenvironmental reconstruction based on the habitat weighting method has been applied to the rodent assemblage. According to this method, the most common elements indicate an open-dry habitat (36.5%), followed by water edge (25.7%) and rocky (21.0%) elements. Open-wet (15.5%) and woodland elements (1.3%) are rare. Therefore, the habitat occupied by the hominids of Dmanisi was characterized by the prevalence of arid conditions, from steppe or semi-desert to open Mediterranean forest, with stony or rocky substrate and bushy areas. The presence of permanent aquatic environments is also documented. From a biogeographic point of view, the small mammal community from Dmanisi is composed mainly by Western or Central Asian elements, with a poor representation of European elements (Mimomys, Apodemus). It is concluded that Dmanisi hominins most possibly had ecological requirements which were different from those of the Early Pleistocene hominins from Western Europe, which settled on wetter habitats. It could be also possible that Dmanisi hominins entered Southern Caucasus at an interglacial phase before the deposition of the Dmanisi site.


Assuntos
Hominidae , Lagomorpha , Animais , Eulipotyphla , Fósseis , República da Geórgia , Murinae , Roedores
5.
Am J Bot ; 108(9): 1761-1774, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591314

RESUMO

PREMISE: Two Bignoniaceae stems with the distinctive anatomy of a liana are described from the Miocene of South America. They are the first fossil evidence of climbing habit in Bignoniaceae. METHODS: The fossil lianas are siliceous permineralizations. Transverse, tangential, and radial thin sections of the woods were prepared for study using standard petrographic techniques and observed under both light and scanning electron microscopy. RESULTS: The stems consist of wood and presumably bark (peripheral tissues). They exhibit phloem wedges, a cambial variant associated with the climbing habit in Bignoniaceae. The wood is diffuse-porous; solitary and in radial multiples vessels; alternated intervessel pitting; ray-vessel pitting with distinct borders; simple perforation plates; rays 1-3 seriate, composed of procumbent cells or body ray cells procumbent with one or two-row of upright or square marginal cells; fibers septate and non-septate, with simple to minutely bordered pits; axial parenchyma scanty paratracheal, vasicentric, septate; perforated ray cells; prismatic crystals in rays, and rays and fibers irregularly storied. The fossil stems are related to extant Dolichandra unguis-cati (L.) Miers. CONCLUSIONS: The fossils represent a new taxon, Dolichandra pacei sp. nov., which confirms the presence of a neotropical Bignoniaceae liana from the Miocene and provides the first and oldest evidence of the climbing habit in the family. Paleobotanical studies in the Mariño Formation, with the record of Bignoniaceae and Verbenaceae, and phylogenetic and biogeographical studies have great importance to understand plant evolution and diversification in South American Andes.


Assuntos
Bignoniaceae , Fósseis , Floema , Filogenia , América do Sul
6.
J Hum Evol ; 140: 102377, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-28966046

RESUMO

New hippopotamid specimens recently collected at Kanapoi (ca. 4 Ma) are similar to the taxon previously recognized in this site and referred to aff. Hippopotamus protamphibius. Their examination provided the opportunity to reassess the taxonomic status of this taxon. It appears different from the late Miocene hippopotamids from the Turkana Basin (prominently Archaeopotamus harvardi), but also differs from the late Pliocene-early Pleistocene aff. Hip. protamphibius, which is smaller and displays more advanced features (notably canine expansion and orbit elevation). In contrast, the Kanapoi material appears very similar to the material from the Hadar Formation (3.4 Ma-2.9 Ma). However, the current confusion surrounding the taxonomic status of the Hadar specimens, previously attributed to various taxa that may be identical, does not allow attribution of a specific name to the Kanapoi material for now and, while waiting for the revision of Hadar hippopotamid diversity, it is referred here to aff. Hippopotamus cf. sp. Hadar. This contribution allows recognizing that a large hippopotamid, possibly a transitional form between the late Miocene species and Plio-Pleistocene species, was distributed from Afar to Turkana between 4.2 Ma and 2.95 Ma. The marked endemism of hippopotamids in the Pleistocene rift basins therefore initiated after 2.9 Ma.


Assuntos
Artiodáctilos/classificação , Evolução Biológica , Fósseis/anatomia & histologia , Animais , Artiodáctilos/anatomia & histologia , Quênia
7.
J Hum Evol ; 146: 102835, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652341

RESUMO

The Honda Group of La Venta, Colombia, has yielded a wide array of crown platyrrhine primates, documenting the late Middle Miocene epoch (ca. 13.1-12.6 Ma, Laventan South American Land Mammal Age). Although exceptional, this record represents only a snapshot of the evolutionary history of New World monkeys because virtually none of the primate taxa recorded at La Venta had so far been found elsewhere. We describe here few dental remains of a cebine platyrrhine discovered from Laventan deposits in the San Martín Department of Peru (Peruvian Amazonia). The primate dental specimens from that new fossil-bearing locality (TAR-31) are strongly reminiscent morphologically of the teeth of Neosaimiri fieldsi from La Venta. However, given that several aspects of the dental variability from TAR-31 are unknown, we prefer to provide an assignment with open nomenclature (i.e., N. cf. fieldsi), instead of formally referring these remains to N. fieldsi, pending the discovery of additional specimens. The occurrence of Neosaimiri in Peru, in coeval deposits of La Venta, thus represents a second and southernmost record of that low-latitude genus in the Neotropics, thereby demonstrating its wide distribution along the northwestern edge of the Pebas Mega-Wetland System, in tropical western South America.


Assuntos
Distribuição Animal , Fósseis , Saimirinae , Animais , Fósseis/anatomia & histologia , Peru , Saimirinae/anatomia & histologia , Dente/anatomia & histologia
8.
BMC Evol Biol ; 19(1): 3, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611195

RESUMO

BACKGROUND: The lake deposits of the informal Ruby Paper Shale unit, part of the Renova Formation of Montana, have yielded abundant plant fossils that document Late Eocene - Early Oligocene global cooling in western North America. A nearly complete small bird with feather impressions was recovered from this unit in in 1959, but has only been informally mentioned. RESULTS: Here we describe this fossil and identify it as a new species of Zygodactylus, a stem lineage passerine with a zygodactyl foot. The new taxon shows morphological traits that are convergent on crown Passeriformes, including an elongate hallux, reduced body size, and a comparative shortening of proximal limb elements. The fossil documents the persistence of this lineage into the earliest Oligocene (~ 33 Ma) in North America. It is the latest occurring North American species of a group that persists in Europe until the Miocene. CONCLUSIONS: Eocene-Oligocene global cooling is known to have significantly remodeled both Palearctic and Nearctic mammal faunas but its impact on related avifaunas has remained poorly understood. The geographic and temporal range expansion provided by the new taxon together with avian other taxa with limited fossil records suggests a similar pattern of retraction in North America followed by Europe.


Assuntos
Passeriformes/classificação , Filogenia , Animais , Tamanho Corporal , Extremidades/anatomia & histologia , Plumas/anatomia & histologia , Fósseis , Geografia , América do Norte , Crânio/anatomia & histologia , Especificidade da Espécie , Coluna Vertebral/anatomia & histologia , Fatores de Tempo
9.
J Hum Evol ; 134: 102628, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31446974

RESUMO

Three field seasons of exploration along the Río Alto Madre de Dios in Peruvian Amazonia have yielded a fauna of micromammals from a new locality AMD-45, at ∼12.8°S. So far we have identified the new primate described here as well as small caviomorph rodents, cenolestoid marsupials, interatheriid notoungulates, xenarthrans, fish, lizards and invertebrates. The site is in the Bala Formation as exposed where the river transects a syncline. U-Pb dates on detrital zircons constrain the locality's age at between 17.1 ± 0.7 Ma and 18.9 ± 0.7 Ma, making the fauna age-equivalent to that from the Pinturas Formation and the older parts of the Santa Cruz Formation of Patagonian Argentina (Santacrucian). The primate specimen is an unworn M1 of exceptionally small size (equivalent in size to the extant callitrichine, Callithrix jacchus, among the smallest living platyrrhines and the smallest Eocene-Early Miocene platyrrhine yet recorded). Despite its small size it is unlike extant callitrichines in having a prominent cingulum hypocone. Based on the moderate development of the buccal crests, this animal likely had a diet similar to that of frugivorous callitrichines, and distinctly different from the more similarly-sized gummivores, Cebuella and C. jacchus. The phyletic position of the new taxon is uncertain, especially given the autapomorphic character of the tooth as a whole. Nevertheless, its unusual morphology hints at a wholly original and hitherto unknown Amazonian fauna, and reinforces the impression of the geographic separation of the Amazonian tropics from the more geographically isolated southerly parts of the continent in Early Miocene times.


Assuntos
Fósseis/anatomia & histologia , Platirrinos/classificação , Animais , Evolução Biológica , Peru , Filogenia , Platirrinos/anatomia & histologia , Dente/anatomia & histologia
10.
Naturwissenschaften ; 106(1-2): 2, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610457

RESUMO

The Early Permian Richards Spur locality is unique in preserving a highly diverse faunal assemblage in a cave system, composed of synapsids, reptiles, and anamniotes. However, the presence of Dimetrodon, the most common synapsid of Early Permian localities of the southwestern USA, has never been recorded from the site. Here, we describe for the first time the morphology and histology of a small neural spine with the distinctive figure-8 shape attributable to Dimetrodon. Additionally, histological analysis of previously described sphenacodontid teeth suggests the presence of a derived species of Dimetrodon at the Richards Spur locality. The presence of this derived synapsid, typical of the later occurring Kungurian localities of Texas and Oklahoma, is unexpected at the stratigraphically older Richards Spur locality. The cave system at Richards Spur preserves mainly basal synapsid taxa, including small caseid, varanopid, and sphenacodontid skeletal remains. The presence of a derived species of Dimetrodon suggests not only that this animal was more widespread than previously thought, but that there are different patterns of Early Permian synapsid evolution in different ecological settings.


Assuntos
Fósseis , Répteis/anatomia & histologia , Répteis/classificação , Distribuição Animal , Animais , Cavernas , Oklahoma , Vertebrados/classificação
11.
J Phycol ; 55(1): 134-145, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30317649

RESUMO

Adeylithon gen. nov. with one species, A. bosencei sp. nov., belonging to the subfamily Hydrolithoideae is described from Pacific coral reefs based on psbA sequences and morpho-anatomy. In contrast with Hydrolithon, A. bosencei showed layers of large polygonal "cells," which resulted from extensive lateral fusions of perithallial cells, interspersed among layers of vegetative cells. This anatomical feature is shared with the fossil Aethesolithon, but lacking DNA sequences from the fossils and the fragmentary nature of Aethesolithon type material, we cannot ascertain if Adeylithon and Aethesolithon are congeneric. Morpho-anatomical features of A. bosencei were generally congruent with diagnostic features of the subfamily Hydrolithoideae: (i) outline of cell filaments entirely lost in large portions due to pervasive and extensive cell fusions, (ii) trichocytes not arranged in tightly packed horizontal fields, (iii) basal layer without palisade cells, and (iv) cells lining the canal pore oriented more or less perpendicular to roof surface and not protruding into the canal. However, it showed a predominant monomerous thallus organization and trichocytes were disposed in large pustulate, horizontal fields, although they were not tightly packed and did not become distinctly buried in the thallus. Only mature tetrasporangial conceptacles were observed, therefore the type of conceptacle roof formation remained undetermined. Adeylithon bosencei occurs on shallow coral reefs, in Australia, Papua New Guinea, and South Pacific islands (Fiji, Vanuatu). Fossil Aethesolithon is considered an important component of shallow coral reefs since the Miocene; fossil records showed a broad Indo-Pacific distribution, but a long-term process of range contraction in the last 2.6 million years, resulting in an overlap with the distribution of the extant Adeylithon. While the congeneric nature of extant and fossil taxa remained uncertain, similarities in morpho-anatomy, habitat, and distribution may indicate that both taxa likely shared a common ancestor.


Assuntos
Fósseis , Rodófitas , Austrália , Recifes de Corais , Filogenia
12.
Glob Chang Biol ; 24(8): 3499-3507, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29504230

RESUMO

Biodiversity studies of global change mainly focus on direct impacts such as losses in species numbers or ecosystem functions. In this study, we focus on the long-term effects of recent land-cover conversion and subsequent ecological isolation of Kilimanjaro on biodiversity in a paleobiogeographical context, linking our findings with the long-standing question whether colonization of African mountains mainly depended on long-distance dispersal, or whether gradual migration has been possible through habitat bridges under colder climates. For this, we used Orthoptera as bioindicators, whose patterns of endemism and habitat demands we studied on about 500 vegetation plots on Kilimanjaro and Mt. Meru (Tanzania) since 1996. Land-cover changes in the same area were revealed using a supervised classification of Landsat images from 1976 to 2000. In 1976, there was a corridor of submontane forest vegetation linking Kilimanjaro with Mt. Meru, replaced by human settlements and agriculture after 2000. Until recently, this submontane forest bridge facilitated the dispersal of forest animals, illustrated by the large number of endemic submontane forest Orthoptera shared by both mountains. Furthermore, the occurrence of common montane endemics suggests the existence of a former forest corridor with montane vegetation during much earlier times under climatic conditions 2-7°C cooler and 400-1,700 mm wetter than today. Based on the endemicity patterns of forest Orthoptera, negative consequences are predicted due to the effects of isolation, in particular for larger forest animals. Kilimanjaro is becoming an increasingly isolated ecosystem with far reaching consequences for diversity and endemism. Forest bridges between East African mountains acted as important migratory corridors and are not only a prehistoric phenomenon during periods with other climatic conditions but also disappeared in some places recently due to increasing and direct anthropogenic impact.


Assuntos
Distribuição Animal , Biodiversidade , Ecossistema , Ortópteros/fisiologia , Agricultura , Animais , Florestas , Tanzânia
13.
J Phycol ; 53(3): 567-576, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28191634

RESUMO

The temporal dimension of the most recent Corallinaceae (order Corallinales) phylogeny was presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a separation of Corallinales from Hapalidiales in the Albian (Early Cretaceous ~105 mya). Neither the calibration nor the fossil record resolved the succession of appearance of the first three emerging subfamilies: Mastophoroideae, Corallinoideae, and Neogoniolithoideae. The development of the tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials was an evolutionary novelty emerging at the Cretaceous-Paleogene boundary (~66 mya). This novelty was shared by the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae, which diverged in the early Paleogene. Subclades within the Metagoniolithoideae and Lithophylloideae diversified in the late Oligocene-middle Miocene (~28-12 mya). The most common reef corallinaceans (Hydrolithon, Porolithon, Harveylithon, "Pneophyllum" conicum, and subclades within Lithophylloideae) appeared in this interval in the Indo-Australian Archipelago.


Assuntos
Evolução Biológica , Rodófitas/genética , Proteínas de Algas/genética , Evolução Molecular , Fósseis , Filogenia , RNA de Algas/genética , Rodófitas/classificação
14.
Am Nat ; 188(2): 133-48, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27420780

RESUMO

Fossils and other paleontological information can improve phylogenetic comparative method estimates of phenotypic evolution and generate hypotheses related to species diversification. Here, we use fossil information to calibrate ancestral reconstructions of suitable climate for Sceloporus lizards in North America. Integrating data from the fossil record, general circulation models of paleoclimate during the Miocene, climate envelope modeling, and phylogenetic comparative methods provides a geographically and temporally explicit species distribution model of Sceloporus-suitable habitat through time. We provide evidence to support the historic biogeographic hypothesis of Sceloporus diversification in warm North American deserts and suggest a relatively recent Sceloporus invasion into Mexico around 6 Ma. We use a physiological model to map extinction risk. We suggest that the number of hours of restriction to a thermal refuge limited Sceloporus from inhabiting Mexico until the climate cooled enough to provide suitable habitat at approximately 6 Ma. If the future climate returns to the hotter climates of the past, Mexico, the place of highest modern Sceloporus richness, will no longer provide suitable habitats for Sceloporus to survive and reproduce.


Assuntos
Clima , Fósseis , Lagartos/classificação , Filogeografia , Animais , Evolução Biológica , Mudança Climática , Ecossistema , Lagartos/fisiologia , México
15.
J Hum Evol ; 97: 159-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27457552

RESUMO

Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have resulted in the discovery of a late Oligocene (ca. 26.5 Ma; Chambira Formation) fossil primate-bearing locality (CTA-61). In this paper, we analyze the primate material consisting of two isolated upper molars, the peculiar morphology of which allows us to describe a new medium-sized platyrrhine monkey: Canaanimico amazonensis gen. et sp. nov. In addition to the recent discovery of Perupithecus ucayaliensis, a primitive anthropoid taxon of African affinities from the alleged latest Eocene Santa Rosa locality (Peruvian Amazonia), the discovery of Canaanimico adds to the evidence that primates were well-established in the Amazonian Basin during the Paleogene. Our phylogenetic results based on dental evidence show that none of the early Miocene Patagonian taxa (Homunculus, Carlocebus, Soriacebus, Mazzonicebus, Dolichocebus, Tremacebus, and Chilecebus), the late Oligocene Bolivian Branisella, or the Peruvian Canaanimico, is nested within a crown platyrrhine clade. All these early taxa are closely related and considered here as stem Platyrrhini. Canaanimico is nested within the Patagonian Soriacebinae, and closely related to Soriacebus, thereby extending back the soriacebine lineage to 26.5 Ma. Given the limited dental evidence, it is difficult to assess if Canaanimico was engaged in a form of pitheciine-like seed predation as is observed in Soriacebus and Mazzonicebus, but dental microwear patterns recorded on one upper molar indicate that Canaanimico was possibly a fruit and hard-object eater. If Panamacebus, a recently discovered stem cebine from the early Miocene of Panama, indicates that the crown platyrrhine radiation was already well underway by the earliest Miocene, Canaanimico indicates in turn that the "homunculid" radiation (as a part of the stem radiation) was well underway by the late Oligocene. These new data suggest that the stem radiation likely occurred in the Neotropics during the Oligocene, and that several stem lineages independently reached Patagonia during the early Miocene. Finally, we are still faced with a "layered" pattern of platyrrhine evolution, but modified in terms of timing of cladogeneses. If the crown platyrrhine radiation occurred in the Neotropics around the Oligocene-Miocene transition (or at least during the earliest Miocene), it was apparently concomitant with the diversification of the latest stem forms in Patagonia.


Assuntos
Fósseis/anatomia & histologia , Filogenia , Platirrinos/anatomia & histologia , Platirrinos/classificação , Animais , Evolução Biológica , Dente Molar/anatomia & histologia , Peru
16.
Am J Phys Anthropol ; 154(3): 387-401, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24782403

RESUMO

Although advanced anthropoid primates (i.e., Simiiformes) are recorded at the end of the Eocene in North Africa (Proteopithecidae, Parapithecidae, and Oligopithecidae), the origin and emergence of this group has so far remained undocumented. The question as to whether these primates are the result of a monophyletic radiation of endemic anthropoids in Africa, or several Asian clades colonizing Africa, is a current focus of paleoprimatology. In this article, we report the discovery of a new anthropoid from Djebel el Kébar in central Tunisia, dating from the late middle Eocene (Bartonian). This taxon, Amamria tunisiensis, new genus and species, currently known by only one isolated upper molar, is among the most ancient anthropoids to be recorded in Africa thus far. Amamria displays a suite of dental features that are primarily observed in Eosimiiformes (stem Anthropoidea). However, it is not allocated to any known family of that group (i.e., Asian Eosimiidae and Afro-Asian Afrotarsiidae) inasmuch as it develops some dental traits that are unknown among eosimiiforms, but can be found in African simiiform anthropoids such as proteopithecids and oligopithecids. With such a mosaic of dental traits, Amamria appears to be a structural intermediate, and as such it could occupy a key position, close to the root of the African simiiforms. Given its antiquity and its apparent pivotal position, the possibility exists that Amamria could have evolved in Africa from Asian eosimiiform or Asian "proto"-simiiform ancestors, which would have entered Africa sometime during the middle Eocene. Amamria could then represent one of the earliest offshoots of the African simiiform radiation. This view would then be rather in favor of the hypothesis of a monophyletic radiation of endemic simiiform anthropoids in Africa. Finally, these new data suggest that there must have been at least two Asian anthropoid colonizers of Africa: the afrotarsiids and the ancestor of Amamria.


Assuntos
Evolução Biológica , Fósseis , Haplorrinos/anatomia & histologia , Haplorrinos/classificação , Animais , Antropologia Física , Dente Molar/anatomia & histologia , Tunísia
17.
Integr Zool ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567525

RESUMO

Porcupines, members of the Hystricidae family, represent a unique group of herbivorous mammals. This study details the identification of a newly discovered mandible fragment of Hystrix primigenia, along with a right cheek tooth series from the middle Turolian Kemiklitepe-A fossil locality. While Hystrix fossils are found in numerous localities, the materials are often limited to a few dental fragments or isolated teeth, posing challenges to systematic investigations. The examination of this lower tooth series prompted a comprehensive review of all H. primigenia findings across Eurasia, shedding light on its adaptive characteristics over time and space. Our paleobiogeographical analysis indicates the absence of H. depereti in Late Miocene Türkiye, while the dispersal range of H. primigenia is broader than that of H. depereti in Eurasia. Additionally, the study delves into the discussion of H. primigenia and H. depereti findings in Eurasia, ultimately refining the categorization of Late Miocene Hystrix discoveries in Türkiye to two species: H. primigenia and H. kayae. Our review suggests the possibility of an additional H. kayae finding from Samos, Greece.

18.
PeerJ ; 12: e16894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426149

RESUMO

The fossil record of gladius-bearing coleoids is scarce and based only on a few localities with geological horizons particularly favourable to their preservation (the so-called Konservat-Lagerstätten), which naturally leads to strongly limited data on geographical distributions. This emphasizes the importance of every new locality providing gladius-bearing coleoids. Here, we assess for the first time the gladius-bearing coleoid taxonomic diversity within the lower Toarcian "Schistes Cartons" of the Causses Basin (southeastern France). The material includes two fragmentary gladii, identified as Paraplesioteuthis sagittata and ?Loligosepia sp. indet. Just with these two specimens, two (Prototeuthina and Loligosepiina) of the three (Prototeuthina, Loligosepiina and Teudopseina) suborders of Mesozoic gladius-bearing coleoids are represented. Thus, our results hint at a rich early Toarcian gladius-bearing coleoid diversity in the Causses Basin and point out the need for further field investigations in the lower Toarcian "Schistes Cartons" in this area. This new record of Paraplesioteuthis sagittata is only the second one in Europe and the third in the world (western Canada, Germany and now France). Based on these occurrences, we tentatively suggest that P. sagittata originated in the Mediterranean domain and moved to the Arctic realm through the Viking Corridor to eventually move even farther to North America.


Assuntos
Cefalópodes , Animais , Filogenia , França , Europa (Continente) , Fósseis , Aves
19.
Biology (Basel) ; 13(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38392334

RESUMO

Nowadays, the infraorder Delphinida (oceanic dolphins and kin) represents the most diverse extant clade of Cetacea, with delphinids alone accounting for more than 40% of the total number of living cetacean species. As for other cetacean groups, the Early Miocene represents a key interval for the evolutionary history of Delphinida, as it was during this time span that the delphinidans became broadly distributed worldwide, first and foremost with the widespread genus Kentriodon and closely related forms. Here, we report on a new odontocete find from Burdigalian (20.4-19.0 Ma) deposits of the Friulian-Venetian Basin of northeastern Italy, consisting of the partial cranium of a small delphinidan with associated ear bones (right periotic, stapes, malleus and tympanic bulla). Osteoanatomical considerations and comparisons allow us to assign the studied specimen to the genus Kentriodon. This is the first confirmed record of Kentriodon from Europe as well as from the whole proto-Mediterranean region. Stratigraphic and phylogenetic considerations suggest that our new specimen may represent the geologically oldest member of Kentriodon. The evolutionary success of Kentriodon may correlate with the emergence of narrow-band high-frequency echolocation as a possible strategy to escape acoustic detection by large marine predators such as the squalodontids. In addition, the relatively high encephalization quotient of Kentriodon spp. may have provided these early dolphins with some kind of competitive advantage over the coeval non-delphinidan odontocetes.

20.
Integr Zool ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532680

RESUMO

The Çorakyerler fossil locality in Anatolia reveals unique faunal elements. This study introduces Hystrix kayae sp. nov., a new Late Miocene porcupine initially classified as Hystrix sp. Yavuz et al., 2018. This finding expands our knowledge of Late Miocene Anatolian porcupines, bringing the total number of known species to three. H. kayae sp. nov. is larger than Hystrix aryanensis and exhibits greater upper cheek tooth crown height. Its cheek tooth morphology differs from Hystrix depereti, and it possesses distinctive U-shaped choanae unlike Hystrix primigenia. The Çorakyerler locality may predate sites with H. aryanensis and H. primigenia but aligns temporally with Hystrix parvae localities. This study enhances our understanding of Late Miocene porcupine diversity in Anatolia, emphasizing the importance of Çorakyerler in unraveling the evolutionary history of these fascinating mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA