Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 940
Filtrar
1.
Cell ; 186(1): 47-62.e16, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608657

RESUMO

Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.


Assuntos
Ecossistema , Genoma Bacteriano , Genoma Bacteriano/genética , Filogenia , Oceanos e Mares , Genômica
2.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34051138

RESUMO

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Assuntos
Ecótipo , Variação Genética , Genoma de Planta , Oryza/genética , Adaptação Fisiológica/genética , Agricultura , Domesticação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Estrutural do Genoma , Anotação de Sequência Molecular , Fenótipo
3.
Cell ; 182(1): 162-176.e13, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553274

RESUMO

Soybean is one of the most important vegetable oil and protein feed crops. To capture the entire genomic diversity, it is needed to construct a complete high-quality pan-genome from diverse soybean accessions. In this study, we performed individual de novo genome assemblies for 26 representative soybeans that were selected from 2,898 deeply sequenced accessions. Using these assembled genomes together with three previously reported genomes, we constructed a graph-based genome and performed pan-genome analysis, which identified numerous genetic variations that cannot be detected by direct mapping of short sequence reads onto a single reference genome. The structural variations from the 2,898 accessions that were genotyped based on the graph-based genome and the RNA sequencing (RNA-seq) data from the representative 26 accessions helped to link genetic variations to candidate genes that are responsible for important traits. This pan-genome resource will promote evolutionary and functional genomics studies in soybean.


Assuntos
Genoma de Planta , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Sequência de Bases , Cromossomos de Plantas/genética , Domesticação , Ecótipo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Fusão Gênica , Geografia , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Poliploidia
4.
Trends Genet ; 40(7): 601-612, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777691

RESUMO

With broad genetic diversity and as a source of key agronomic traits, wild grape species (Vitis spp.) are crucial to enhance viticulture's climatic resilience and sustainability. This review discusses how recent breakthroughs in the genome assembly and analysis of wild grape species have led to discoveries on grape evolution, from wild species' adaptation to environmental stress to grape domestication. We detail how diploid chromosome-scale genomes from wild Vitis spp. have enabled the identification of candidate disease-resistance and flower sex determination genes and the creation of the first Vitis graph-based pangenome. Finally, we explore how wild grape genomics can impact grape research and viticulture, including aspects such as data sharing, the development of functional genomics tools, and the acceleration of genetic improvement.


Assuntos
Genoma de Planta , Genômica , Vitis , Vitis/genética , Genômica/métodos , Genoma de Planta/genética , Variação Genética , Resistência à Doença/genética , Domesticação , Evolução Molecular
5.
Trends Genet ; 39(6): 433-435, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019751

RESUMO

Genomic islands are hotspots for horizontal gene transfer (HGT) in bacteria, but, for Prochlorococcus, an abundant marine cyanobacterium, how these islands form has puzzled scientists. With the discovery of tycheposons, a new family of transposons, Hackl et al. provide evidence for elegant new mechanisms of gene rearrangement and transfer among Prochlorococcus and bacteria more broadly.


Assuntos
Bacteriófagos , Cianobactérias , Bacteriófagos/genética , Transferência Genética Horizontal/genética , Cianobactérias/genética , RNA de Transferência/genética , Ilhas Genômicas
6.
Proc Natl Acad Sci U S A ; 120(31): e2211117120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487084

RESUMO

Potato (Solanum sp., family Solanaceae) is the most important noncereal food crop globally. It has over 100 wild relatives in the Solanum section Petota, which features species with both sexual and asexual reproduction and varying ploidy levels. A pangenome of Solanum section Petota composed of 296 accessions was constructed including diploids and polyploids compared via presence/absence variation (PAV). The Petota core (genes shared by at least 97% of the accessions) and shell genomes (shared by 3 to 97%) are enriched in basic molecular and cellular functions, while the cloud genome (genes present in less than 3% of the member accessions) showed enrichment in transposable elements (TEs). Comparison of PAV in domesticated vs. wild accessions was made, and a phylogenetic tree was constructed based on PAVs, grouping accessions into different clades, similar to previous phylogenies produced using DNA markers. A cladewise pangenome approach identified abiotic stress response among the core genes in clade 1+2 and clade 3, and flowering/tuberization among the core genes in clade 4. The TE content differed between the clades, with clade 1+2, which is composed of species from North and Central America with reproductive isolation from species in other clades, having much lower TE content compared to other clades. In contrast, accessions with in vitro propagation history were identified and found to have high levels of TEs. Results indicate a role for TEs in adaptation to new environments, both natural and artificial, for Solanum section Petota.


Assuntos
Solanum tuberosum , Solanum , Elementos de DNA Transponíveis , Filogenia , Ploidias
7.
Plant J ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872506

RESUMO

Tea, one of the most widely consumed beverages globally, exhibits remarkable genomic diversity in its underlying flavour and health-related compounds. In this study, we present the construction and analysis of a tea pangenome comprising a total of 11 genomes, with a focus on three newly sequenced genomes comprising the purple-leaved assamica cultivar "Zijuan", the temperature-sensitive sinensis cultivar "Anjibaicha" and the wild accession "L618" whose assemblies exhibited excellent quality scores as they profited from latest sequencing technologies. Our analysis incorporates a detailed investigation of transposon complement across the tea pangenome, revealing shared patterns of transposon distribution among the studied genomes and improved transposon resolution with long read technologies, as shown by long terminal repeat (LTR) Assembly Index analysis. Furthermore, our study encompasses a gene-centric exploration of the pangenome, exploring the genomic landscape of the catechin pathway with our study, providing insights on copy number alterations and gene-centric variants, especially for Anthocyanidin synthases. We constructed a gene-centric pangenome by structurally and functionally annotating all available genomes using an identical pipeline, which both increased gene completeness and allowed for a high functional annotation rate. This improved and consistently annotated gene set will allow for a better comparison between tea genomes. We used this improved pangenome to capture the core and dispensable gene repertoire, elucidating the functional diversity present within the tea species. This pangenome resource might serve as a valuable resource for understanding the fundamental genetic basis of traits such as flavour, stress tolerance, and disease resistance, with implications for tea breeding programmes.

8.
BMC Biol ; 22(1): 92, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654264

RESUMO

BACKGROUND: Transposable elements (TEs) have a profound influence on the trajectory of plant evolution, driving genome expansion and catalyzing phenotypic diversification. The pangenome, a comprehensive genetic pool encompassing all variations within a species, serves as an invaluable tool, unaffected by the confounding factors of intraspecific diversity. This allows for a more nuanced exploration of plant TE evolution. RESULTS: Here, we constructed a pangenome for diploid A-genome cotton using 344 accessions from representative geographical regions, including 223 from China as the main component. We found 511 Mb of non-reference sequences (NRSs) and revealed the presence of 5479 previously undiscovered protein-coding genes. Our comprehensive approach enabled us to decipher the genetic underpinnings of the distinct geographic distributions of cotton. Notably, we identified 3301 presence-absence variations (PAVs) that are closely tied to gene expression patterns within the pangenome, among which 2342 novel expression quantitative trait loci (eQTLs) were found residing in NRSs. Our investigation also unveiled contrasting patterns of transposon proliferation between diploid and tetraploid cotton, with long terminal repeat (LTR) retrotransposons exhibiting a synchronized surge in polyploids. Furthermore, the invasion of LTR retrotransposons from the A subgenome to the D subgenome triggered a substantial expansion of the latter following polyploidization. In addition, we found that TE insertions were responsible for the loss of 36.2% of species-specific genes, as well as the generation of entirely new species-specific genes. CONCLUSIONS: Our pangenome analyses provide new insights into cotton genomics and subgenome dynamics after polyploidization and demonstrate the power of pangenome approaches for elucidating transposon impacts and genome evolution.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Genoma de Planta , Gossypium , Gossypium/genética , Elementos de DNA Transponíveis/genética , Locos de Características Quantitativas
9.
BMC Biol ; 22(1): 25, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281938

RESUMO

BACKGROUND: Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS: Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS: Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.


Assuntos
Ascomicetos , Solanum lycopersicum , Solanum lycopersicum/genética , Elementos de DNA Transponíveis/genética , Genes Fúngicos , Cladosporium/genética , Cladosporium/metabolismo , Plantas/metabolismo , Cromossomos/metabolismo , Nucleotídeos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo
10.
Genomics ; 116(3): 110855, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703968

RESUMO

Clostridium butyricum is a Gram-positive anaerobic bacterium known for its ability to produce butyate. In this study, we conducted whole-genome sequencing and assembly of 14C. butyricum industrial strains collected from various parts of China. We performed a pan-genome comparative analysis of the 14 assembled strains and 139 strains downloaded from NCBI. We found that the genes related to critical industrial production pathways were primarily present in the core and soft-core gene categories. The phylogenetic analysis revealed that strains from the same clade of the phylogenetic tree possessed similar antibiotic resistance and virulence factors, with most of these genes present in the shell and cloud gene categories. Finally, we predicted the genes producing bacteriocins and botulinum toxins as well as CRISPR systems responsible for host defense. In conclusion, our research provides a desirable pan-genome database for the industrial production, food application, and genetic research of C. butyricum.


Assuntos
Clostridium butyricum , Genoma Bacteriano , Filogenia , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Sequenciamento Completo do Genoma , Bacteriocinas/genética , Bacteriocinas/biossíntese , Microbiologia Industrial , Toxinas Botulínicas/genética , Fatores de Virulência/genética
11.
BMC Bioinformatics ; 25(1): 238, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003441

RESUMO

MOTIVATION: Alignment of reads to a reference genome sequence is one of the key steps in the analysis of human whole-genome sequencing data obtained through Next-generation sequencing (NGS) technologies. The quality of the subsequent steps of the analysis, such as the results of clinical interpretation of genetic variants or the results of a genome-wide association study, depends on the correct identification of the position of the read as a result of its alignment. The amount of human NGS whole-genome sequencing data is constantly growing. There are a number of human genome sequencing projects worldwide that have resulted in the creation of large-scale databases of genetic variants of sequenced human genomes. Such information about known genetic variants can be used to improve the quality of alignment at the read alignment stage when analysing sequencing data obtained for a new individual, for example, by creating a genomic graph. While existing methods for aligning reads to a linear reference genome have high alignment speed, methods for aligning reads to a genomic graph have greater accuracy in variable regions of the genome. The development of a read alignment method that takes into account known genetic variants in the linear reference sequence index allows combining the advantages of both sets of methods. RESULTS: In this paper, we present the minimap2_index_modifier tool, which enables the construction of a modified index of a reference genome using known single nucleotide variants and insertions/deletions (indels) specific to a given human population. The use of the modified minimap2 index improves variant calling quality without modifying the bioinformatics pipeline and without significant additional computational overhead. Using the PrecisionFDA Truth Challenge V2 benchmark data (for HG002 short-read data aligned to the GRCh38 linear reference (GCA_000001405.15) with parameters k = 27 and w = 14) it was demonstrated that the number of false negative genetic variants decreased by more than 9500, and the number of false positives decreased by more than 7000 when modifying the index with genetic variants from the Human Pangenome Reference Consortium.


Assuntos
Variação Genética , Genoma Humano , Sequenciamento Completo do Genoma , Humanos , Sequenciamento Completo do Genoma/métodos , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência/métodos , Software , Algoritmos , Estudo de Associação Genômica Ampla/métodos
12.
Plant J ; 113(3): 446-459, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534120

RESUMO

Deep sequencing is a term that has become embedded in the plant genomic literature in recent years and with good reason. A torrent of (largely) high-quality genomic and transcriptomic data has been collected and most of this has been publicly released. Indeed, almost 1000 plant genomes have been reported (www.plabipd.de) and the 2000 Plant Transcriptomes Project has long been completed. The EarthBioGenome project will dwarf even these milestones. That said, massive progress in understanding plant physiology, evolution, and crop domestication has been made by sequencing broadly (across a species) as well as deeply (within a single individual). We will outline the current state of the art in genome and transcriptome sequencing before we briefly review the most visible of these broad approaches, namely genome-wide association and transcriptome-wide association studies, as well as the compilation of pangenomes. This will include both (i) the most commonly used methods reliant on single nucleotide polymorphisms and short InDels and (ii) more recent examples which consider structural variants. We will subsequently present case studies exemplifying how their application has brought insight into either plant physiology or evolution and crop domestication. Finally, we will provide conclusions and an outlook as to the perspective for the extension of such approaches to different species, tissues, and biological processes.


Assuntos
Domesticação , Estudo de Associação Genômica Ampla , Genoma de Planta/genética , Genômica , Plantas
13.
Plant J ; 113(1): 26-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377929

RESUMO

The advent of the pangenome era has unraveled previously unknown genetic variation existing within diverse crop plants, including rice. This untapped genetic variation is believed to account for a major portion of phenotypic variation existing in crop plants. However, the use of conventional single reference-guided genotyping often fails to capture a large portion of this genetic variation leading to a reference bias. This makes it difficult to identify and utilize novel population/cultivar-specific genes for crop improvement. Thus, we developed a Rice Pangenome Genotyping Array (RPGA) harboring probes assaying 80K single-nucleotide polymorphisms (SNPs) and presence-absence variants spanning the entire 3K rice pangenome. This array provides a simple, user-friendly and cost-effective (60-80 USD per sample) solution for rapid pangenome-based genotyping in rice. The genome-wide association study (GWAS) conducted using RPGA-SNP genotyping data of a rice diversity panel detected a total of 42 loci, including previously known as well as novel genomic loci regulating grain size/weight traits in rice. Eight of these identified trait-associated loci (dispensable loci) could not be detected with conventional single reference genome-based GWAS. A WD repeat-containing PROTEIN 12 gene underlying one of such dispensable locus on chromosome 7 (qLWR7) along with other non-dispensable loci were subsequently detected using high-resolution quantitative trait loci mapping confirming authenticity of RPGA-led GWAS. This demonstrates the potential of RPGA-based genotyping to overcome reference bias. The application of RPGA-based genotyping for population structure analysis, hybridity testing, ultra-high-density genetic map construction and chromosome-level genome assembly, and marker-assisted selection was also demonstrated. A web application (http://www.rpgaweb.com) was further developed to provide an easy to use platform for the imputation of RPGA-based genotyping data using 3K rice reference panel and subsequent GWAS.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Mapeamento Cromossômico , Oryza/genética , Genótipo , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética
14.
BMC Genomics ; 25(1): 405, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658835

RESUMO

Graph-based pangenome is gaining more popularity than linear pangenome because it stores more comprehensive information of variations. However, traditional linear genome browser has its own advantages, especially the tremendous resources accumulated historically. With the fast-growing number of individual genomes and their annotations available, the demand for a genome browser to visualize genome annotation for many individuals together with a graph-based pangenome is getting higher and higher. Here we report a new pangenome browser PPanG, a precise pangenome browser enabling nucleotide-level comparison of individual genome annotations together with a graph-based pangenome. Nine rice genomes with annotations were provided by default as potential references, and any individual genome can be selected as the reference. Our pangenome browser provides unprecedented insights on genome variations at different levels from base to gene, and reveals how the structures of a gene could differ for individuals. PPanG can be applied to any species with multiple individual genomes available and it is available at https://cgm.sjtu.edu.cn/PPanG .


Assuntos
Genômica , Genômica/métodos , Oryza/genética , Anotação de Sequência Molecular , Genoma de Planta , Variação Genética , Software , Navegador , Bases de Dados Genéticas , Nucleotídeos/genética , Genoma
15.
BMC Genomics ; 25(1): 57, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216873

RESUMO

BACKGROUND: The disease caused by Riemerella anatipestifer (R. anatipestifer, RA) results in large economic losses to the global duck industry every year. Serovar-related genomic variation, such as the O-antigen and capsular polysaccharide (CPS) gene clusters, has been widely used for serotyping in many gram-negative bacteria. RA has been classified into at least 21 serovars based on slide agglutination, but the molecular basis of serotyping is unknown. In this study, we performed a pan-genome-wide association study (Pan-GWAS) to identify the genetic loci associated with RA serovars. RESULTS: The results revealed a significant association between the putative CPS synthesis gene locus and the serological phenotype. Further characterization of the CPS gene clusters in 11 representative serovar strains indicated that they were highly diverse and serovar-specific. The CPS gene cluster contained the key genes wzx and wzy, which are involved in the Wzx/Wzy-dependent pathway of CPS synthesis. Similar CPS loci have been found in some other species within the family Weeksellaceae. We have also shown that deletion of the wzy gene in RA results in capsular defects and cross-agglutination. CONCLUSIONS: This study indicates that the CPS synthesis gene cluster of R. anatipestifer is a serotype-specific genetic locus. Importantly, our finding provides a new perspective for the systematic analysis of the genetic basis of the R anatipestifer serovars and a potential target for establishing a complete molecular serotyping scheme.


Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Sorogrupo , Estudo de Associação Genômica Ampla , Riemerella/genética , Patos/genética , Patos/microbiologia , Doenças das Aves Domésticas/microbiologia
16.
BMC Genomics ; 25(1): 28, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172677

RESUMO

BACKGROUND: Enterococcus faecium and E. lactis are phylogenetically closely related lactic acid bacteria that are ubiquitous in nature and are known to be beneficial or pathogenic. Despite their considerable industrial and clinical importance, comprehensive studies on their evolutionary relationships and genomic, metabolic, and pathogenic traits are still lacking. Therefore, we conducted comparative pangenome analyses using all available dereplicated genomes of these species. RESULTS: E. faecium was divided into two subclades: subclade I, comprising strains derived from humans, animals, and food, and the more recent phylogenetic subclade II, consisting exclusively of human-derived strains. In contrast, E. lactis strains, isolated from diverse sources including foods, humans, animals, and the environment, did not display distinct clustering based on their isolation sources. Despite having similar metabolic features, noticeable genomic differences were observed between E. faecium subclades I and II, as well as E. lactis. Notably, E. faecium subclade II strains exhibited significantly larger genome sizes and higher gene counts compared to both E. faecium subclade I and E. lactis strains. Furthermore, they carried a higher abundance of antibiotic resistance, virulence, bacteriocin, and mobile element genes. Phylogenetic analysis of antibiotic resistance and virulence genes suggests that E. faecium subclade II strains likely acquired these genes through horizontal gene transfer, facilitating their effective adaptation in response to antibiotic use in humans. CONCLUSIONS: Our study offers valuable insights into the adaptive evolution of E. faecium strains, enabling their survival as pathogens in the human environment through horizontal gene acquisitions.


Assuntos
Enterococcus faecium , Animais , Humanos , Filogenia , Enterococcus , Genômica , Antibacterianos
17.
BMC Genomics ; 25(1): 216, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413855

RESUMO

BACKGROUND: Shewanella xiamenensis, widely distributed in natural environments, has long been considered as opportunistic pathogen. Recently, significant changes in the resistance spectrum have been observed in S. xiamenensis, due to acquired antibiotic resistance genes. Therefore, a pan-genome analysis was conducted to illuminate the genomic changes in S. xiamenensis. RESULTS: Phylogenetic analysis revealed three major clusters and three singletons, among which close relationship between several strains was discovered, regardless of their host and niches. The "open" genomes with diversity of accessory and strain-specific genomes took advantage towards diversity environments. The purifying selection pressure was the main force on genome evolution, especially in conservative genes. Only 53 gene families were under positive selection pressure. Phenotypic resistance analysis revealed 21 strains were classified as multi-drug resistance (MDR). Ten types of antibiotic resistance genes and two heavy metal resistance operons were discovered in S. xiamenensis. Mobile genetic elements and horizontal gene transfer increased genome diversity and were closely related to MDR strains. S. xiamenensis carried a variety of virulence genes and macromolecular secretion systems, indicating their important roles in pathogenicity and adaptability. Type IV secretion system was discovered in 15 genomes with various sequence structures, indicating it was originated from different donors through horizontal gene transfer. CONCLUSIONS: This study provided with a detailed insight into the changes in the pan-genome of S. xiamenensis, highlighting its capability to acquire new mobile genetic elements and resistance genes for its adaptation to environment and pathogenicity to human and animals.


Assuntos
Variação Genética , Genoma Bacteriano , Shewanella , Animais , Humanos , Virulência/genética , Filogenia , Resistência Microbiana a Medicamentos
18.
BMC Genomics ; 25(1): 691, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004696

RESUMO

BACKGROUND: Muskoxen are important ecosystem components and provide food, economic opportunities, and cultural well-being for Indigenous communities in the Canadian Arctic. Between 2010 and 2021, Erysipelothrix rhusiopathiae was isolated from carcasses of muskoxen, caribou, a seal, and an Arctic fox during multiple large scale mortality events in the Canadian Arctic Archipelago. A single strain ('Arctic clone') of E. rhusiopathiae was associated with the mortalities on Banks, Victoria and Prince Patrick Islands, Northwest Territories and Nunavut, Canada (2010-2017). The objectives of this study were to (i) characterize the genomes of E. rhusiopathiae isolates obtained from more recent muskox mortalities in the Canadian Arctic in 2019 and 2021; (ii) identify and compare common virulence traits associated with the core genome and mobile genetic elements (i.e. pathogenicity islands and prophages) among Arctic clone versus other E. rhusiopathiae genomes; and iii) use pan-genome wide association studies (GWAS) to determine unique genetic contents of the Arctic clone that may encode virulence traits and that could be used for diagnostic purposes. RESULTS: Phylogenetic analyses revealed that the newly sequenced E. rhusiopathiae isolates from Ellesmere Island, Nunavut (2021) also belong to the Arctic clone. Of 17 virulence genes analysed among 28 Arctic clone isolates, four genes - adhesin, rhusiopathiae surface protein-A (rspA), choline binding protein-B (cbpB) and CDP-glycerol glycerophosphotransferase (tagF) - had amino acid sequence variants unique to this clone when compared to 31 other E. rhusiopathiae genomes. These genes encode proteins that facilitate E. rhusiopathiae to attach to the host endothelial cells and form biofilms. GWAS analyses using Scoary found several unique genes to be overrepresented in the Arctic clone. CONCLUSIONS: The Arctic clone of E. rhusiopathiae was associated with multiple muskox mortalities spanning over a decade and multiple Arctic islands with distances over 1000 km, highlighting the extent of its spatiotemporal spread. This clone possesses unique gene content, as well as amino acid variants in multiple virulence genes that are distinct from the other closely related E. rhusiopathiae isolates. This study establishes an essential foundation on which to investigate whether these differences are correlated with the apparent virulence of this specific clone through in vitro and in vivo studies.


Assuntos
Erysipelothrix , Regiões Árticas , Erysipelothrix/genética , Erysipelothrix/patogenicidade , Erysipelothrix/isolamento & purificação , Canadá , Animais , Virulência/genética , Genômica , Genoma Bacteriano , Filogenia , Infecções por Erysipelothrix/microbiologia , Fatores de Virulência/genética , Estudo de Associação Genômica Ampla , Ilhas Genômicas
19.
Annu Rev Genomics Hum Genet ; 22: 81-102, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-33929893

RESUMO

The reference human genome sequence is inarguably the most important and widely used resource in the fields of human genetics and genomics. It has transformed the conduct of biomedical sciences and brought invaluable benefits to the understanding and improvement of human health. However, the commonly used reference sequence has profound limitations, because across much of its span, it represents the sequence of just one human haplotype. This single, monoploid reference structure presents a critical barrier to representing the broad genomic diversity in the human population. In this review, we discuss the modernization of the reference human genome sequence to a more complete reference of human genomic diversity, known as a human pangenome.


Assuntos
Genoma Humano , Genômica , Humanos
20.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488860

RESUMO

Integrons are genetic platforms that capture, rearrange and express mobile modules called gene cassettes. The best characterized gene cassettes encode antibiotic resistance, but the function of most integron gene cassettes remains unknown. Functional predictions suggest that many gene cassettes could encode proteins that facilitate interactions with other cells and with the extracellular environment. Because cell interactions are essential for biofilm stability, we sequenced gene cassettes from biofilms growing on the surface of the marine macroalgae Ulva australis and Sargassum linearifolium. Algal samples were obtained from coastal rock platforms around Sydney, Australia, using seawater as a control. We demonstrated that integrons in microbial biofilms did not sample genes randomly from the surrounding seawater, but harboured specific functions that potentially provided an adaptive advantage to both the bacterial cells in biofilm communities and their macroalgal host. Further, integron gene cassettes had a well-defined spatial distribution, suggesting that each bacterial biofilm acquired these genetic elements via sampling from a large but localized pool of gene cassettes. These findings suggest two forms of filtering: a selective acquisition of different integron-containing bacterial species into the distinct biofilms on Ulva and Sargassum surfaces, and a selective retention of unique populations of gene cassettes at each sampling location.


Assuntos
Bactérias , Integrons , Integrons/genética , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos/genética , Resistência Microbiana a Medicamentos , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA