Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Pestic Biochem Physiol ; 202: 105952, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879306

RESUMO

The citrus red mite, Panonychus citri, is one of the most notorious and devastating citrus pests around the world that has developed resistance to multiple chemical acaricides. In previous research, we found that spirodiclofen-resistant is related to overexpression of P450, CCE, and ABC transporter genes in P. citri. However, the regulatory mechanisms of these detoxification genes are still elusive. This study identified all hormone receptor 96 genes of P. citri. 8 PcHR96 genes contained highly conserved domains. The expression profiles showed that PcHR96h was significantly upregulated in spirodiclofen resistant strain and after exposure to spirodiclofen. RNA interference of PcHR96h decreased expression of detoxification genes and increased spirodiclofen susceptibility in P. citri. Furthermore, molecular docking, heterologous expression, and drug affinity responsive target stability demonstrated that PcHR96h can interact with spirodiclofen in vitro. Our research results indicate that PcHR96h plays an important role in regulating spirodiclofen susceptibility and provides theoretical support for the resistance management of P. citri.


Assuntos
Compostos de Espiro , Animais , Compostos de Espiro/farmacologia , Compostos de Espiro/metabolismo , Acaricidas/farmacologia , Propionatos/farmacologia , Propionatos/metabolismo , Tetranychidae/efeitos dos fármacos , Tetranychidae/genética , Tetranychidae/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Resistência a Medicamentos/genética , 4-Butirolactona/análogos & derivados
2.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199120

RESUMO

Molting is essential for arthropods to grow. As one of the important arthropod pests in agriculture, key spider mite species (Tetranychus and Panonychus) can normally molt three times from the larva to adult stage within a week. This physiological strategy results in the short lifecycle of spider mites and difficulties in their control in the field. Long non-coding RNAs (lncRNAs) regulate transcriptional editing, cellular function, and biological processes. Thus, analysis of the lncRNAs in the spider mite molting process may provide new insights into their roles in the molting mechanism. For this purpose, we used high-throughput RNA-seq to examine the expression dynamics of lncRNAs and mRNAs in the molting process of different development stages in Panonychus citri. We identified 9199 lncRNAs from 18 transcriptomes. Analysis of the lncRNAs suggested that they were shorter and had fewer exons and transcripts than mRNAs. Among these, 356 lncRNAs were differentially expressed during three molting processes: late larva to early protonymph, late protonymph to early deutonymph, and late deutonymph to early adult. A time series profile analysis of differentially expressed lncRNAs showed that 77 lncRNAs were clustered into two dynamic expression profiles (Pattern a and Pattern c), implying that lncRNAs were involved in the molting process of spider mites. Furthermore, the lncRNA-mRNA co-expression networks showed that several differentially expressed hub lncRNAs were predicted to be functionally associated with typical molting-related proteins, such as cuticle protein and chitin biosynthesis. These data reveal the potential regulatory function of lncRNAs in the molting process and provide datasets for further analysis of lncRNAs and mRNAs in spider mites.


Assuntos
Genoma Helmíntico , Estudo de Associação Genômica Ampla , Muda/genética , RNA Longo não Codificante/genética , Tetranychidae/fisiologia , Animais , Biologia Computacional/métodos , Genes de Helmintos , Transcriptoma
3.
Bull Entomol Res ; 110(6): 743-755, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32419680

RESUMO

Panonychus citri (McGregor) is the most common pest in citrus-producing regions. Special low-toxicity acaricides, such as spirocyclic tetronic acids and mite growth inhibitors, have been used for a long time in China. However, pesticide resistance in mites is a growing problem due to the lack of new acaricide development. Wide-spectrum insecticides, such as amitraz have gained acceptance among fruit growers. An amitraz-resistant strain of P. citri was obtained by indoor screening to examine field resistance monitoring of mites to acaricides and to explore the resistant mechanism of mites against amitraz. The amitraz-resistant strain of P. citri had an LC50 value of 2361.45 mg l-1. The resistance ratio was 81.35 times higher in the resistant strain of P. citri compared with the sensitive strain. Crossing experiments between the sensitive and resistant strains of P. citri were conducted, resulting in a D value of 0.11 for F1 SS♀×RS♂ and 0.06 for F1 RS♀×SS♂. Reciprocal cross experiments showed that the dose-mortality curves for the F1 generations coincided, indicating that the resistance trait was not affected by cytoplasmic inheritance. The dose-expected response relationship was evaluated in the backcross generation and a significant difference was observed compared with the actual value. The above results indicate that the inheritance of resistance trait was incompletely dominant, governed by polygenes on the chromosome. Synergism studies demonstrated that cytochrome P450s and esterase may play important roles in the detoxification of amitraz. Based on differential gene analysis, 23 metabolism-related genes of P. citri were identified, consistent with the results of synergism studies. Real-time PCR verification implied that P450s, ABC transporters, and acetylcholinesterase might influence the detoxification of amitraz by P. citri. These results provide the genetic and molecular foundation for the management of pest mite resistance.


Assuntos
Inativação Metabólica/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Toluidinas , Acaricidas , Animais , Sistema Enzimático do Citocromo P-450 , Esterases , Tetranychidae/enzimologia
4.
Exp Appl Acarol ; 81(1): 75-83, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32277324

RESUMO

Ecdysteroids regulate molting in arthropods by binding to heterodimers of the ecdysone receptor and retinoid-X-receptor, homologous to the ultraspiracle protein, to induce the expression of downstream signal response genes including the nuclear receptor HR3. However, the detailed expression dynamics of HR3 during molting in spider mites are not yet clear. In this study, the full length of PcHR3 was retrieved based on the genome of citrus red mite, Panonychus citri. The open reading frame is 1707 bp encoding 568 amino acids, which contains a DNA binding domain and a ligand binding domain. Then, the expression pattern of PcHR3 was analyzed throughout the development of the deutonymph by RT-qPCR. The result showed that PcHR3 was mainly transcribed in the late deutonymph stage, when the deutonymph was at least 24 h old and motionless, the critical point at which the mites started molting. Transcription reached the highest level in 32-h-old deutonymphs and decreased by 36 h, where the mites remained in a quiescent state. Further silencing of PcHR3 by leaf-disc-based delivery of dsRNA to 8-h-old deutonymph mites, resulted in retarded development and death of 58% of deutonymphs. In summary, we suggest that PcHR3 regulates the latter stages of molting in P. citri.


Assuntos
Muda , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/fisiologia , Tetranychidae , Animais , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/fisiologia , Ecdisteroides , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores
5.
Artigo em Inglês | MEDLINE | ID: mdl-30659951

RESUMO

Neuropeptide ecdysis triggering hormone (ETH) plays crucial roles in invertebrates by activating a G protein-coupled receptor (GPCR), the ecdysis triggering hormone receptor (ETHR), which has been intensively investigated in Hexapoda. However, the molecular characterization of ETH and ETHR in Chelicerata remains unknown. In this study, we identified and characterized the full-length cDNA of ETH and ETHR in citrus red mite Panonychus citri (McGregor). Phylogenetic analysis indicated that PcETHR was closely related to the insect ETHR subtype B. A calcium mobilization-based functional assay showed that PcETH activated the PcETHR in a dose-dependent manner. Furthermore, a sharp upregulation of PcETH before ecdysis was observed by quantitative real-time PCR (qRT-PCR), and it revealed a tight correlation of ETH signaling and the molting process. These are the first insights into the molecular characterization of ETH and its receptor in mites as P. citri. Our work provides basic information of the ETH and ETHR in P. citri and lays a solid foundation for further physiological functions to better understand the ETH signaling system in mites.


Assuntos
Hormônios de Inseto/metabolismo , Ácaros/metabolismo , Muda , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , DNA Complementar , Feminino , Hormônios de Inseto/química , Hormônios de Inseto/genética , Receptores de Superfície Celular/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais
6.
Exp Appl Acarol ; 72(3): 229-244, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28656486

RESUMO

The citrus red mite, Panonychus citri, is one of the most economically and globally destructive mite pests of citrus. Acaricide resistance has been a growing problem in controlling this pest. As the main inhibitory neurotransmitter in organisms, γ-aminobutyric acid (GABA) is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). In the present study, one novel GAD gene, PcGAD, was identified and characterized from P. citri. The opening reading frame of PcGAD contained 1548 nucleotides that encode 515 amino acids. The subsequent spatiotemporal expression pattern by RT-qPCR revealed that the expression levels of PcGAD were significantly higher in larvae than in adults. Challenging with various concentrations of abamectin resulted in the upregulation of PcGAD transcript levels. Furthermore, biochemical characterization indicated that changes in GAD activity coincided with its mRNA levels. High-performance liquid chromatography confirmed that the GABA contents of P. citri increased upon abamectin treatment. The application of abamectin induces PcGAD expression and activates GAD activity, thereby resulting in an increase in GABA content in P. citri, which contributes to the adaptability of the mite to abamectin challenge.


Assuntos
Glutamato Descarboxilase/metabolismo , Ivermectina/análogos & derivados , Tetranychidae , Ácido gama-Aminobutírico/metabolismo , Animais , Glutamato Descarboxilase/efeitos dos fármacos , Ivermectina/farmacologia
7.
Pestic Biochem Physiol ; 132: 72-80, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27521916

RESUMO

The citrus red mite, Panonychus citri (McGregor), a major citrus pest distributed worldwide, has been found to be resistant to various insecticides and acaricides used in China. However, the molecular mechanisms associated with the abamectin resistance in this species have not yet been reported. In this study, results showed over-expression of a novel glutathione S-transferases (GSTs) gene (PcGSTm5) in abamectin-resistant P. citri. Quantitative real-time PCR analysis showed that the transcripts of PcGSTm5 were also significantly up-regulated after exposure to abamectin and the maximum mRNA expression level at nymphal stage. The recombinant protein of PcGSTm5-pET-28a produced by Escherichia coli showed a pronounced activity toward the conjugates of 1-chloro-2,4 dinitrobenzene (CDNB) and glutathione (GSH). The kinetics of CDNB and GSH and its optimal pH and thermal stability were also determined. Reverse genetic study through a new method of leaf-mediated dsRNA feeding further support a link between the expression of PcGSTm5 and abamectin resistance. However, no direct evidence was found in metabolism or inhibition assays to confirm the hypothesis that PcGSTm5 can metabolize abamectin. Finally, it is here speculated that PcGSTm5 may play a role in abamectin detoxification through other pathway such as the antioxidant protection.


Assuntos
Acaricidas , Glutationa Transferase/genética , Ivermectina/análogos & derivados , Tetranychidae/genética , Animais , Bioensaio , Resistência a Medicamentos , Feminino , Genes/genética , Glutationa Transferase/metabolismo , Tetranychidae/efeitos dos fármacos , Tetranychidae/enzimologia
8.
Int J Mol Sci ; 17(8)2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27548163

RESUMO

The citrus red mite, Panonychus citri (McGregor), is a major citrus pest with a worldwide distribution and an extensive record of pesticide resistance. However, the underlying molecular mechanism associated with fenpropathrin resistance in this species have not yet been reported. In this study, synergist triphenyl phosphate (TPP) dramatically increased the toxicity of fenpropathrin, suggesting involvement of carboxylesterases (CarEs) in the metabolic detoxification of this insecticide. The subsequent spatiotemporal expression pattern analysis of PcE1, PcE7 and PcE9 showed that three CarEs genes were all over-expressed after insecticide exposure and higher transcripts levels were observed in different field resistant strains of P. citri. Heterologous expression combined with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) cytotoxicity assay in Spodoptera frugiperda (Sf9) cells revealed that PcE1-, PcE7- or PcE9-expressing cells showed significantly higher cytoprotective capability than parental Sf9 cells against fenpropathrin, demonstrating that PcEs probably detoxify fenpropathrin. Moreover, gene silencing through the method of leaf-mediated dsRNA feeding followed by insecticide bioassay increased the mortalities of fenpropathrin-treated mites by 31% (PcE1), 27% (PcE7) and 22% (PcE9), respectively, after individual PcE gene dsRNA treatment. In conclusion, this study provides evidence that PcE1, PcE7 and PcE9 are functional genes mediated in fenpropathrin resistance in P. citri and enrich molecular understanding of CarEs during the resistance development of the mite.


Assuntos
Esterases/genética , Ácaros/enzimologia , Piretrinas/farmacologia , Animais , Hidrolases de Éster Carboxílico/genética , Resistência a Medicamentos/genética , Esterases/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Ácaros/efeitos dos fármacos , Spodoptera
9.
Exp Appl Acarol ; 70(1): 1-15, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27388447

RESUMO

Chitinases are hydrolytic enzymes that are required for chitin degradation and reconstruction in arthropods. In this study, we report a cDNA sequence encoding a putative chitinase (PcCht1) from the citrus red mite, Panonychus citri. The PcCht1 (564 aa) possessed a signal peptide, a conserver domain, and a chitin-binding domain. Structural and phylogenetic analyses found that PcCht1 had high sequence similarity to chitinases in Tetranychus urticae. Real-time quantitative PCR analyses showed that the transcript levels of PcCht1 peaked periodically in larval and nymph stages. Moreover, significant increase of PcCht1 transcript level in the larvae was observed upon the exposure of diflubenzuron. In contrast, exposures of the larvae to diflubenzuron resulted in the decreased chitin content. Furthermore, through a feeding-based RNA interference approach, we were able to reduce the PcCht1 transcript level by 59.7 % in the larvae, and consequently the treated larvae showed a very low molting rate compared with the control. Our results expanded the understanding of the important role of PcCht1 in the growth and development of P. citri.


Assuntos
Proteínas de Artrópodes/genética , Quitinases/genética , Metamorfose Biológica , Interferência de RNA , Tetranychidae/crescimento & desenvolvimento , Tetranychidae/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Quitinases/metabolismo , Clonagem Molecular , DNA Complementar/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Filogenia , RNA Mensageiro/genética , Tetranychidae/enzimologia
10.
Int J Mol Sci ; 16(11): 26964-77, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26569230

RESUMO

The effective dose of irradiation to control pest mites in quarantine has been studied extensively, but the molecular mechanisms underlying the effects of the irradiation on mites are largely unknown. In this study, exposure to 400 Gy of γ rays had significant (p < 0.05) effects on the adult survival, fecundity and egg viability of Panonychus citri. The irradiation caused the degradation of the DNA of P. citri adults and damaged the plasma membrane system of the egg, which led to condensed nucleoli and gathered yolk. Additionally, the transcriptomes and gene expression profiles between irradiated and non-irradiated mites were compared, and three digital gene expression libraries were assembled and analyzed. The differentially expressed genes were putatively involved in apoptosis, cell death and the cell cycle. Finally, the expression profiles of some related genes were studied using quantitative real-time PCR. Our study provides valuable information on the changes in the transcriptome of irradiated P. citri, which will facilitate a better understanding of the molecular mechanisms that cause the sterility induced by irradiation.


Assuntos
Radioisótopos de Cobalto , Tetranychidae/genética , Tetranychidae/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Ciclo Celular/efeitos da radiação , Morte Celular/efeitos da radiação , Análise por Conglomerados , Radioisótopos de Cobalto/efeitos adversos , Dano ao DNA/efeitos da radiação , Raios gama , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Óvulo/efeitos da radiação , Óvulo/ultraestrutura , Reprodução/efeitos da radiação , Transcriptoma
11.
Insect Mol Biol ; 23(2): 216-29, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24330037

RESUMO

The citrus red mite (Panonychus citri) can feed on more than 112 plant species around the world. Endogenous small RNAs (sRNAs) have proved to be important components of gene regulation in many eukaryotes. Recently, many sRNAs have been shown to be involved in various biological processes, such as development in many animals, including insects; however, to date, no sRNAs have been reported in the citrus red mite. Using Illumina sequencing, several categories of sRNAs were identified, including 594 known microRNAs (miRNAs) grouped into 206 families and 31 novel miRNAs in the four developmental stages of citrus red mite. In addition, according to bioinformatics analysis and S-Poly(T) miRNA assays, the expression level of many miRNAs varied among the developmental stages. Furthermore, the prediction of miRNAs target genes and their functional annotation indicated that miRNAs are involved in the regulation of multiple pathways in the citrus red mite. As the first report of the sRNA world in citrus red mite, the present study furthers our understanding of the roles played by sRNAs in the development of citrus red mite and the data may help to develop methods of controlling the pests in the field.


Assuntos
MicroRNAs/genética , Tetranychidae/genética , Transcriptoma , Animais , Feminino , Larva/genética , Larva/metabolismo , MicroRNAs/metabolismo , Dados de Sequência Molecular , Ninfa/genética , Ninfa/metabolismo , Óvulo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Tetranychidae/crescimento & desenvolvimento , Tetranychidae/metabolismo
12.
Korean J Parasitol ; 52(1): 117-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24623894

RESUMO

Several studies have reported that the citrus red mites Panonychus citri were an important allergen of citrus-cultivating farmers in Jeju Island. The aim of the present study was to purify and assess properties of a cysteine protease from the mites acting as a potentially pathogenic factor to citrus-cultivating farmers. A cysteine protease was purified using column chromatography of Mono Q anion exchanger and Superdex 200 HR gel filtration. It was estimated to be 46 kDa by gel filtration column chromatography and consisted of 2 polypeptides, at least. Cysteine protease inhibitors, such as trans poxy-succinyl-L-leucyl-amido (4-guanidino) butane (E-64) and iodoacetic acid (IAA) totally inhibited the enzyme activities, whereas serine or metalloprotease inhibitors did not affect the activities. In addition, the purified enzyme degraded human IgG, collagen, and fibronectin, but not egg albumin. From these results, the cysteine protease of the mites might be involved in the pathogenesis such as tissue destruction and penetration instead of nutrient digestion.


Assuntos
Cisteína Proteases/isolamento & purificação , Tetranychidae/enzimologia , Animais , Cromatografia em Gel , Cromatografia por Troca Iônica , Colágeno/metabolismo , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/metabolismo , Fibronectinas/metabolismo , Humanos , Imunoglobulina G/metabolismo , Peso Molecular , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Proteólise , Especificidade por Substrato
13.
Int J Biol Macromol ; 270(Pt 2): 132228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734355

RESUMO

Panonychus citri (McGregor) strains have developed a high level of resistance to abamectin, but the underlying molecular mechanism is unknown. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are critical for the removal of a variety of exogenous and endogenous substances. In this study, an enzyme activity assay revealed that UGTs potentially contribute to P. citri abamectin resistance. Spatiotemporal expression profiles showed that only PcUGT202A9 was significantly overexpressed in the abamectin-resistant strain (AbR) at all developmental stages. Moreover, UGT activity decreased significantly, whereas abamectin susceptibility increased significantly, in AbR after PcUGT202A9 was silenced. Three-dimensional modeling and molecular docking analyses revealed that PcUGT202A9 can bind stably to abamectin. Recombinant PcUGT202A9 activity was detected when α-naphthol was used, but the enzymatic activity was inhibited by abamectin (50 % inhibitory concentration: 803.3 ±â€¯14.20 µmol/L). High-performance liquid chromatography and mass spectrometry analyses indicated that recombinant PcUGT202A9 can effectively degrade abamectin and catalyze the conjugation of UDP-glucose to abamectin. These results imply PcUGT202A9 contributes to P. citri abamectin resistance.


Assuntos
Glicosiltransferases , Ivermectina , Simulação de Acoplamento Molecular , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Animais , Resistência a Medicamentos/genética
14.
Pest Manag Sci ; 80(3): 1258-1265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37889506

RESUMO

BACKGROUND: The citrus red mite, Panonychus citri (McGregor), a global pest of citrus, has developed different levels of resistance to various acaricides in the field. Abamectin is one of the most important insecticides/acaricides worldwide, targetting a wide number of insect and mite pests. The evolution of abamectin resistance in P. citri is threatening the sustainable use of abamectin for mite control. RESULTS: The abamectin resistant strain (NN-Aba), derived from a field strain NN by consistent selection with abamectin, showed 4279-fold resistance to abamectin compared to a relatively susceptible strain (SS) of P. citri. Cross-resistance of NN-Aba was observed between abamectin and emamectin benzoate, pyridaben, fenpropathrin and cyflumetofen. Inheritance analyses indicated that abamectin resistance in the NN-Aba strain was autosomal, incompletely recessive and polygenic. The synergy experiment showed that abamectin toxicity was synergized by piperonyl butoxide (PBO), diethyl maleate (DEM) and tributyl phosphorotrithiotate (TPP) in the NN-Aba strain, and synergy ratios were 2.72-, 2.48- and 2.13-fold, respectively. The glutathione-S-transferases activity in the NN-Aba strain were significantly increased by 2.08-fold compared with the SS strain. CONCLUSION: The abamectin resistance was autosomal, incompletely recessive and polygenic in P. citri. The NN-Aba strain showed cross-resistance to various acaricides with different modes of action. Metabolic detoxification mechanism participated in abamectin resistance in NN-Aba strain. These findings provide useful information for resistance management of P. citri in the field. © 2023 Society of Chemical Industry.


Assuntos
Acaricidas , Citrus , Ivermectina/análogos & derivados , Ácaros , Tetranychidae , Animais , Acaricidas/farmacologia
15.
J Agric Food Chem ; 72(31): 17306-17316, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39054269

RESUMO

Overexpression of carboxyl/cholinesterase (CCE) genes has been reported to be associated with many cases of pesticide resistance in arthropods. However, it has been rarely documented that CCE genes participate in spirodiclofen resistance in Panonychus citri. In previous research, we found that spirodiclofen resistance is related to increased P450 and CCE enzyme activities in P. citri. In this study, we identified two CCE genes, PcCCE3 and PcCCE5, which were significantly upregulated in spirodiclofen-resistant strain and after exposure to spirodiclofen. RNA interference of PcCCE3 and PcCCE5 increased the spirodiclofen susceptibility in P. citri. In vitro metabolism indicated that PcCCE3 and PcCCE5 could interact with spirodiclofen, but metabolites were detected only in the PcCCE3 treatment. Our results indicated that PcCCE3 participates in spirodiclofen resistance through direct metabolism, and PcCCE5 may be involved in the spirodiclofen resistance by passive binding and sequestration, which provides new insights into spirodiclofen resistance in P. citri.


Assuntos
Proteínas de Artrópodes , Compostos de Espiro , Animais , Compostos de Espiro/farmacologia , Compostos de Espiro/metabolismo , Compostos de Espiro/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/química , Resistência a Medicamentos/genética , Carboxilesterase/genética , Carboxilesterase/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacologia
16.
Pest Manag Sci ; 80(7): 3308-3316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38375770

RESUMO

BACKGROUND: The citrus red mite, Panonychus citri (McGregor) is a globally distributed agricultural pest. Of late, resistance to common acaricides has raised concerns that chemical control of P. citri is an inefficient means of control. Fluralaner, a highly toxic isoxazoline insecticide used to treat various ectoparasites, presents one potential alternative. However, little information has been reported about the effect of fluralaner on the citrus red mite. This study aims to evaluate the toxicity, sublethal and transgenerational effects of fluralaner on P. citri. RESULTS: In both laboratory and field populations of P. citri, we found fluralaner to be more toxic than conventional alternatives, including fenpropathrin, bifenazate, azocyclotin and chlorpyrifos. Interestingly, fluralaner proved more toxic to female adults than to the eggs of P. citri, with median lethal concentrations (LC50) of 2.446 and 122.7 mg L-1, respectively. Exposure to sublethal concentrations of fluralaner (LC10, LC20 and LC30) significantly reduced the fecundity and longevity of female adults P. citri individuals. Although concentrations of fluralaner applied to the parental female adults (F0) led to some changes in the developmental parameters, there were no significant changes in most of the life table parameters or population growth of the F1 generation. CONCLUSION: Our results indicate that fluralaner is highly toxic to P. citri, and a significant sublethal effect on F0 could suppress the population growth of P. citri, but not for F1. Fluralaner may be considered as a pesticide for the future management of the citrus red mite. © 2024 Society of Chemical Industry.


Assuntos
Acaricidas , Isoxazóis , Animais , Isoxazóis/toxicidade , Acaricidas/toxicidade , Feminino , Masculino , Ácaros/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento
17.
Pest Manag Sci ; 80(10): 5412-5420, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38924229

RESUMO

BACKGROUND: The citrus red mite, Panonychus citri is a serious pest of the citrus industry and has developed resistance to many acaricides. Broflanilide is a novel meta-diamide insecticide that binds to a new site on the γ -aminobutyric acid receptor with high potency against pests. However, little information has been reported about its effect on the citrus red mite. RESULTS: Broflanilide exhibited higher toxicity to female adults and eggs of a laboratory strain of P. citri The median lethal concentration (LC50), 9.769 mg/L and 4.576 mg/L, respectively) than other commonly used acaricides and was also toxic to two P. citri field strains. Broflanilide treatment with LC10, LC20, and LC30 significantly decreased the fecundity and longevity of female adults of F0 P. citri compared with the control. The duration of larva, protonymph, deutonymph and adult, and total life span in the F1 generation were significantly reduced after treatment of F0 with broflanilide. Population parameters, including the intrinsic rate of increase (r) and finite rate of increase (λ), were significantly increased, and the mean generation time (T) of F1 progeny was significantly reduced in the LC20 treatment. The predicted population size of F1 increased when parental female adults were treated with sublethal concentrations. CONCLUSION: Broflanilide had high acaricidal activity toward P. citri, and exposure to a sublethal concentration significantly inhibited the population growth of F0. The transgenerational hormesis effect is likely to cause population expansion of F1. More attention should be paid when broflanilide is applied to control P. citri in citrus orchards. © 2024 Society of Chemical Industry.


Assuntos
Acaricidas , Animais , Acaricidas/farmacologia , Feminino , Citrus , Tetranychidae/efeitos dos fármacos , Tetranychidae/fisiologia , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/efeitos dos fármacos , Ninfa/fisiologia , Masculino , Fertilidade/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Óvulo/efeitos dos fármacos
18.
J Agric Food Chem ; 72(13): 7010-7020, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529524

RESUMO

Cyetpyrafen is a recently developed acaricide. The citrus red mite, Panonychus citri (McGregor), has developed significant resistance to cyetpyrafen. However, the molecular mechanism underlying the cyetpyrafen resistance in P. citri remains unclear. Glutathione S-transferases (GSTs) play a critical role in arthropod pesticide resistance. This study showed that GSTs were potentially related to the resistance of P. citri to cyetpyrafen through synergistic experiments and enzyme activity analysis. An omega-family GST gene, PcGSTO1, was significantly up-regulated in the egg, nymph, and adult stages of the cyetpyrafen-resistant strain. Additionally, silencing of PcGSTO1 significantly increased the mortality of P. citri to cyetpyrafen and recombinant PcGSTO1 demonstrated the ability to metabolize cyetpyrafen. Our results indicated that the overexpression of PcGSTO1 is associated with cyetpyrafen resistance in P. citri, and they also provided valuable information for managing resistance in P. citri.


Assuntos
Acaricidas , Tetranychidae , Animais , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Tetranychidae/genética , Tetranychidae/metabolismo , Acaricidas/farmacologia , Acaricidas/metabolismo
19.
Open Life Sci ; 19(1): 20220837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585628

RESUMO

The abundance of Panonychus citri McGregor 1916 (Acari: Tetranychidae) and its associated enemies (Euseius stipulatus Athias-Henriot, 1960; Typhlodromus sp.; Phytoseiulus persimilis Athias-Henriot, 1957) was studied on two 12-year-old citrus cultivars, specifically Clementine "Nules" (Citrus Clementina) and Valencia (Citrus sinensis), in the Gharb region of Morocco. Throughout the entire monitoring period in the Valencia late cultivar, the density of the spider mite P. citri on leaves was notably higher at 38.0% (n = 1,212 mobile forms). Predator P. persimilis exhibited a leaf occupancy of 25.0% (n = 812), followed by Typhlodromus sp. at 20.0% (n = 643). Conversely, the abundance of E. stipulatus was lower at 17.0% (n = 538). In the Nules variety, P. citri abundance recorded a higher percentage at 48.0% (n = 1,922). E. stipulatus emerged as the most abundant predator at 23.0% (n = 898), followed by P. persimilis with 16.0% (n = 639). Meanwhile, the population of Typlodromus sp. remained notably low at 13.0% (n = 498). Regarding the fluctuation of the different mites studied on the two cultivars across monitoring dates, the period from May 4 to June 1 was characterized by low temperatures and a diminished presence of mite populations (P. citri, E. stipulatus, Typhlodromus sp., and P. persimilis). However, from June 7 to June 19, characterized by high temperatures, a notable increase in the presence of mite populations was observed. As regards the effect of the variety on the different mites studied, the varietal impact was significant.

20.
Pest Manag Sci ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344807

RESUMO

BACKGROUND: The citri red mite, Panonychus citri (McGregor), is an important citrus pest worldwide, causing enormous economic losses to citrus production. Bifenazate is a widely used acaricide for controlling P. citri. The detoxification mechanism of bifenazate is not clear in P. citri. RESULTS: PcGSTMu2, a significantly upregulated GST gene, was identified by the transcriptome analysis of P. citri after bifenazate exposure. The expression level of PcGSTMu2 was significantly increased after bifenazate exposure. By using RNAi of PcGSTMu2, the susceptibility of P. citri to bifenazate was significantly increased. Protein modeling and docking of PcGSTMu2 with GSH and bifenazate indicated the potential amino acid residues for binding in the active site. Heterologous expression and in vitro functional assays further revealed that PcGSTMu2 could deplete bifenazate. CONCLUSION: These results indicated that PcGSTMu2 plays an important role in the detoxification of bifenazate in P. citri and provides the molecular foundation for understanding bifenazate metabolism in P. citri. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA