Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 169: 67-77, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26722715

RESUMO

The total emission control target of water pollutants (e.g., COD and NH4-N) for a certain industrial sector can be predicted and analysed using the popular technology-based bottom-up modelling. However, this methodology has obvious uncertainty regarding the attainment of mitigation targets. The primary uncertainty comes from macro-production, pollutant reduction roadmap, and technical parameters. This research takes the paper and pulp industry in China as an example, and builds 5 mitigation scenarios via different combinations of raw material structure, scale structure, procedure mitigation technology, and end-of-pipe treatment technology. Using the methodology of uncertainty analysis via Monte Carlo, random sampling was conducted over a hundred thousand times. According to key parameters, sensitive parameters that impact total emission control targets such as industrial output, technique structure, cleaner production technology, and end-of-pipe treatment technology are discussed in this article. It appears that scenario uncertainty has a larger influence on COD emission than NH4-N, hence it is recommended that a looser total emission control target for COD is necessary to increase its feasibility and availability while maintaining the status quo of NH4-N. Consequently, from uncertainty analysis, this research recognizes the sensitive products, techniques, and technologies affecting industrial water pollution.


Assuntos
Monitoramento Ambiental/métodos , Indústrias , Papel , Incerteza , Poluentes da Água/análise , China , Resíduos Industriais/análise , Método de Monte Carlo , Poluição da Água/análise
2.
World J Microbiol Biotechnol ; 32(2): 34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26754672

RESUMO

Xylanases are enzymes with biotechnological relevance in a number of fields, including food, feed, biofuel, and textile industries. Their most significant application is in the paper and pulp industry, where they are used as a biobleaching agent, showing clear economic and environmental advantages over chemical alternatives. Since this process requires high temperatures and alkali media, the identification of thermostable and alkali stable xylanases represents a major biotechnological goal in this field. Moreover, thermostability is a desirable property for many other applications of xylanases. The review makes an overview of xylanase producing microorganisms and their current implementation in paper biobleaching. Future perspectives are analyzed focusing in the efforts carried out to generate thermostable enzymes by means of modern biotechnological tools, including metagenomic analysis, enzyme molecular engineering and nanotechnology. Furthermore, structural and mutagenesis studies have revealed critical sites for stability of xylanases from glycoside hydrolase families GH10 and GH11, which constitute the main classes of these enzymes. The overall conclusions of these works are summarized here and provide relevant information about putative weak spots within xylanase structures to be targeted in future protein engineering approaches.


Assuntos
Bactérias/enzimologia , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Fungos/enzimologia , Indústrias , Papel , Biotecnologia/métodos , Clareadores , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/classificação , Endo-1,4-beta-Xilanases/genética , Indústria Alimentícia/métodos , Indústrias/métodos , Mutagênese , Mutagênese Sítio-Dirigida , Nanotecnologia/métodos , Conformação Proteica , Engenharia de Proteínas
3.
Chemosphere ; 304: 135246, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35679985

RESUMO

Aim of this research was to treat the organics enriched Paper and Pulp Industry (PPI) effluents using multi-metal tolerant predominant indigenous bacterial species. In addition, assessing the potential of treated bacterial biomass as a single cell protein (SCP). The multi-metal tolerant Streptomyces tuirus OS1 was enumerated from the Paper and Pulp Industry (PPI) effluents was identified through standard molecular characterization. S. tuirus OS1 proficiently ameliorated organic contaminants in PPI effluent in the in study at 35 °C, 45 °C, and 25 °C. Fortunately, the S. tuirus OS1 considerably increased the dissolved oxygen level in treated PPI effluent in 30 days of bioremediation process. Interestingly, at 35 °C of bioremediation process the S. tuirus OS1 demonstrated increased dried biomass (7.1 g L-1) with the total crude protein (SCP) as 5.3 g L-1 (78.79%) in 30 days of bioremediation process. These findings suggest that S. tuirus OS1 is capable of reducing organic pollutants in PPI effluents and producing biomass with enriched protein content.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Proteínas Alimentares , Resíduos Industriais/análise , Papel , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 398: 123019, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768833

RESUMO

The increasing demand of rising population leads to the escalation of industrial sectors such as agro-, food-, paper and pulp industries. These industries generated hazardous waste which is primarily organic in nature thus is being dumped or processed in the environment. These waste leads to increasing contamination leading to increased mortality, physical and morphological changes in the organisms/animals in contact. Although the generated waste is hazardous yet it predominantly contains macromolecules and bioactive compounds thus can be efficiently utilized for the extraction and production of value added products. This article reviews the effect of these waste streams on terrestrial and aquatic ecosystems. Since these wastes abundantly contain proteins, lipids, carbohydrates and lignocelluloses thus recycling, reuse and valorization offers an effective strategy for their reduction while comforting the environment. The policies laid down by national and international agencies that directs these industries for reducing the generation of waste and increasing the recyclability and reuse of the generated waste is discussed and the gaps and bottlenecks for these is identified. This study essentially provides the state-of-art information on above aspects by identifying the gaps for future research directions and may contribute in policy development for mitigation strategies.

5.
Adv Biochem Eng Biotechnol ; 172: 245-291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31372682

RESUMO

Xylan and mannan are the two most abundant hemicelluloses, and enzymes that modify these polysaccharides are prominent hemicellulases with immense biotechnological importance. Among these enzymes, xylanases and mannanases which play the vital role in the hydrolysis of xylan and mannan, respectively, attracted a great deal of interest. These hemicellulases have got applications in food, feed, bioethanol, pulp and paper, chemical, and beverage producing industries as well as in biorefineries and environmental biotechnology. The great majority of the enzymes used in these applications are optimally active in mildly acidic to neutral range. However, in recent years, alkaline active enzymes have also become increasingly important. This is mainly due to some benefits of utilizing alkaline active hemicellulases over that of neutral or acid active enzymes. One of the advantages is that the alkaline active enzymes are most suitable to applications that require high pH such as Kraft pulp delignification, detergent formulation, and cotton bioscouring. The other benefit is related to the better solubility of hemicelluloses at high pH. Since the efficiency of enzymatic hydrolysis is often positively correlated to substrate solubility, the hydrolysis of hemicelluloses can be more efficient if performed at high pH. High pH hydrolysis requires the use of alkaline active enzymes. Moreover, alkaline extraction is the most common hemicellulose extraction method, and direct hydrolysis of the alkali-extracted hemicellulose could be of great interest in the valorization of hemicellulose. Direct hydrolysis avoids the time-consuming extensive washing, and neutralization processes required if non-alkaline active enzymes are opted to be used. Furthermore, most alkaline active enzymes are relatively active in a wide range of pH, and at least some of them are significantly or even optimally active in slightly acidic to neutral pH range. Such enzymes can be eligible for non-alkaline applications such as in feed, food, and beverage industries.This chapter largely focuses on the most important alkaline active hemicellulases, endo-ß-1,4-xylanases and ß-mannanases. It summarizes the relevant catalytic properties, structural features, as well as the real and potential applications of these remarkable hemicellulases in textile, paper and pulp, detergent, feed, food, and prebiotic producing industries. In addition, the chapter depicts the role of these extremozymes in valorization of hemicelluloses to platform chemicals and alike in biorefineries. It also reviews hemicelluloses and discusses their biotechnological importance.


Assuntos
Biotecnologia , Glicosídeo Hidrolases , Hidrólise
6.
Bioresour Technol ; 271: 274-282, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30278352

RESUMO

The process parameters for xylanase biobleaching of mixed hardwood pulp like, reaction time (6-35 h), pulp consistency (2.5-15%) and xylanase dose (5-35 U) were optimized using OFAT approach and hybrid statistical tools viz. GA-ANN and GA-ANFIS. The biobleaching ability of xylanase in terms of reducing sugar yield increased up to 28.16 mg g-1 (28.05%) than OFAT optimization (21.99 mg g-1 of pulp) after employing hybrid statistical tools. After TCF bleaching of xylanase treated pulp, we observed that lignin content reduced to 0.29% whereas it was still 0.41% in the untreated pulp. Moreover, the brightness level achieved up to 70.4% in xylanase treated pulp while it was only 53.60% in the chemically treated pulp. The kappa number for xylanase treated, chemically treated, and xylanase-chemical treated pulp was recorded 9.90, 7.10 and 4.70, respectively. The present study reports an improved eco-friendly biobleaching method using novel GA-ANN and GA-ANFIS hybrid statistical tools.


Assuntos
Madeira/metabolismo , Metabolismo dos Carboidratos , Carboidratos , Endo-1,4-beta-Xilanases , Lignina/química , Lignina/metabolismo , Papel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA