Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 169: 67-77, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26722715

RESUMO

The total emission control target of water pollutants (e.g., COD and NH4-N) for a certain industrial sector can be predicted and analysed using the popular technology-based bottom-up modelling. However, this methodology has obvious uncertainty regarding the attainment of mitigation targets. The primary uncertainty comes from macro-production, pollutant reduction roadmap, and technical parameters. This research takes the paper and pulp industry in China as an example, and builds 5 mitigation scenarios via different combinations of raw material structure, scale structure, procedure mitigation technology, and end-of-pipe treatment technology. Using the methodology of uncertainty analysis via Monte Carlo, random sampling was conducted over a hundred thousand times. According to key parameters, sensitive parameters that impact total emission control targets such as industrial output, technique structure, cleaner production technology, and end-of-pipe treatment technology are discussed in this article. It appears that scenario uncertainty has a larger influence on COD emission than NH4-N, hence it is recommended that a looser total emission control target for COD is necessary to increase its feasibility and availability while maintaining the status quo of NH4-N. Consequently, from uncertainty analysis, this research recognizes the sensitive products, techniques, and technologies affecting industrial water pollution.


Assuntos
Monitoramento Ambiental/métodos , Indústrias , Papel , Incerteza , Poluentes da Água/análise , China , Resíduos Industriais/análise , Método de Monte Carlo , Poluição da Água/análise
2.
Chemosphere ; 304: 135246, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35679985

RESUMO

Aim of this research was to treat the organics enriched Paper and Pulp Industry (PPI) effluents using multi-metal tolerant predominant indigenous bacterial species. In addition, assessing the potential of treated bacterial biomass as a single cell protein (SCP). The multi-metal tolerant Streptomyces tuirus OS1 was enumerated from the Paper and Pulp Industry (PPI) effluents was identified through standard molecular characterization. S. tuirus OS1 proficiently ameliorated organic contaminants in PPI effluent in the in study at 35 °C, 45 °C, and 25 °C. Fortunately, the S. tuirus OS1 considerably increased the dissolved oxygen level in treated PPI effluent in 30 days of bioremediation process. Interestingly, at 35 °C of bioremediation process the S. tuirus OS1 demonstrated increased dried biomass (7.1 g L-1) with the total crude protein (SCP) as 5.3 g L-1 (78.79%) in 30 days of bioremediation process. These findings suggest that S. tuirus OS1 is capable of reducing organic pollutants in PPI effluents and producing biomass with enriched protein content.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Proteínas Alimentares , Resíduos Industriais/análise , Papel , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 398: 123019, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768833

RESUMO

The increasing demand of rising population leads to the escalation of industrial sectors such as agro-, food-, paper and pulp industries. These industries generated hazardous waste which is primarily organic in nature thus is being dumped or processed in the environment. These waste leads to increasing contamination leading to increased mortality, physical and morphological changes in the organisms/animals in contact. Although the generated waste is hazardous yet it predominantly contains macromolecules and bioactive compounds thus can be efficiently utilized for the extraction and production of value added products. This article reviews the effect of these waste streams on terrestrial and aquatic ecosystems. Since these wastes abundantly contain proteins, lipids, carbohydrates and lignocelluloses thus recycling, reuse and valorization offers an effective strategy for their reduction while comforting the environment. The policies laid down by national and international agencies that directs these industries for reducing the generation of waste and increasing the recyclability and reuse of the generated waste is discussed and the gaps and bottlenecks for these is identified. This study essentially provides the state-of-art information on above aspects by identifying the gaps for future research directions and may contribute in policy development for mitigation strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA