Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 179(7): 1512-1524.e15, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835030

RESUMO

During cell division, newly replicated DNA is actively segregated to the daughter cells. In most bacteria, this process involves the DNA-binding protein ParB, which condenses the centromeric regions of sister DNA molecules into kinetochore-like structures that recruit the DNA partition ATPase ParA and the prokaroytic SMC/condensin complex. Here, we report the crystal structure of a ParB-like protein (PadC) that emerges to tightly bind the ribonucleotide CTP. The CTP-binding pocket of PadC is conserved in ParB and composed of signature motifs known to be essential for ParB function. We find that ParB indeed interacts with CTP and requires nucleotide binding for DNA condensation in vivo. We further show that CTP-binding modulates the affinity of ParB for centromeric parS sites, whereas parS recognition stimulates its CTPase activity. ParB proteins thus emerge as a new class of CTP-dependent molecular switches that act in concert with ATPases and GTPases to control fundamental cellular functions.


Assuntos
Proteínas de Bactérias/química , Citidina Trifosfato/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Motivos de Nucleotídeos , Ligação Proteica
2.
Mol Cell ; 79(2): 293-303.e4, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32679076

RESUMO

Liquid-liquid phase-separated (LLPS) states are key to compartmentalizing components in the absence of membranes; however, it is unclear whether LLPS condensates are actively and specifically organized in the subcellular space and by which mechanisms. Here, we address this question by focusing on the ParABS DNA segregation system, composed of a centromeric-like sequence (parS), a DNA-binding protein (ParB), and a motor (ParA). We show that parS and ParB associate to form nanometer-sized, round condensates. ParB molecules diffuse rapidly within the nucleoid volume but display confined motions when trapped inside ParB condensates. Single ParB molecules are able to rapidly diffuse between different condensates, and nucleation is strongly favored by parS. Notably, the ParA motor is required to prevent the fusion of ParB condensates. These results describe a novel active mechanism that splits, segregates, and localizes non-canonical LLPS condensates in the subcellular space.


Assuntos
Trifosfato de Adenosina/fisiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Escherichia coli/fisiologia , Transição de Fase , DNA Primase/fisiologia , DNA Bacteriano , Microscopia/métodos , Nanopartículas , Imagem Individual de Molécula/métodos
3.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652748

RESUMO

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Assuntos
Escherichia coli , Plasmídeos , Plasmídeos/metabolismo , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Segregação de Cromossomos , DNA Primase/metabolismo , DNA Primase/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(41): e2204042119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36206370

RESUMO

SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving adenosine triphosphate (ATP)-dependent dimerization and DNA binding, facilitating chromosome segregation in bacteria. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. Here, we show that a major redistribution of SMC complexes drives axial filament formation in a process regulated by ParA/Soj. Furthermore, and unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyze ATP. These results reveal additional roles for ParA/Soj proteins in the regulation of SMC dynamics in bacteria and yet further complexity in the web of interactions involving chromosome replication, segregation and organization, controlled by ParAB and SMC.


Assuntos
Bacillus subtilis , Cromossomos Bacterianos , Adenosina Trifosfatases , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos
5.
Mol Syst Biol ; 14(11): e8516, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446599

RESUMO

Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (parS). However, the mechanism of how a few parS-bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico-mathematical models. We discriminated between these different models by varying some key parameters in vivo using the F plasmid partition system. We found that "Nucleation & caging" is the only coherent model recapitulating in vivo data. We also showed that the stochastic self-assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the "Nucleation & caging" model and successfully applied it to the chromosomally encoded Par system of Vibrio cholerae, indicating that this stochastic self-assembly mechanism is widely conserved from plasmids to chromosomes.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/fisiologia , Plasmídeos/fisiologia , Vibrio cholerae/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/genética , Modelos Teóricos , Plasmídeos/genética , Processos Estocásticos , Biologia de Sistemas/métodos , Vibrio cholerae/fisiologia
6.
Proc Natl Acad Sci U S A ; 112(21): 6613-8, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964325

RESUMO

Spo0J (stage 0 sporulation protein J, a member of the ParB superfamily) is an essential component of the ParABS (partition system of ParA, ParB, and parS)-related bacterial chromosome segregation system. ParB (partition protein B) and its regulatory protein, ParA, act cooperatively through parS (partition S) DNA to facilitate chromosome segregation. ParB binds to chromosomal DNA at specific parS sites as well as the neighboring nonspecific DNA sites. Various ParB molecules can associate together and spread along the chromosomal DNA. ParB oligomer and parS DNA interact together to form a high-order nucleoprotein that is required for the loading of the structural maintenance of chromosomes proteins onto the chromosome for chromosomal DNA condensation. In this report, we characterized the binding of parS and Spo0J from Helicobacter pylori (HpSpo0J) and solved the crystal structure of the C-terminal domain truncated protein (Ct-HpSpo0J)-parS complex. Ct-HpSpo0J folds into an elongated structure that includes a flexible N-terminal domain for protein-protein interaction and a conserved DNA-binding domain for parS binding. Two Ct-HpSpo0J molecules bind with one parS. Ct-HpSpo0J interacts vertically and horizontally with its neighbors through the N-terminal domain to form an oligomer. These adjacent and transverse interactions are accomplished via a highly conserved arginine patch: RRLR. These interactions might be needed for molecular assembly of a high-order nucleoprotein complex and for ParB spreading. A structural model for ParB spreading and chromosomal DNA condensation that lead to chromosome segregation is proposed.


Assuntos
Proteínas de Bactérias/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Difração de Raios X
7.
Plasmid ; 80: 54-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25889267

RESUMO

In bacteria, low-copy number plasmids are faithfully segregated at cell division by active partition systems that rely on plasmid-specific centromere sequences. When an identical centromere is present on a second plasmid, faithful partition is impaired causing plasmid loss. Depending on the copy number of the co-resident replicon, several mechanisms have been proposed to account for this centromere-based plasmid incompatibility. To gain further insights into these mechanisms, we analyzed the positioning of the F plasmid in the presence of incompatible low- and high-copy number plasmids carrying the F centromere. Our data are fully compatible with the titration hypothesis when extra-centromeres are present on high-copy number plasmids. Interestingly, our plasmids' localization data revealed that the strong incompatibility phenotype, observed when extra centromeres are present on a partition defective low-copy number plasmid, does not directly result from a partition deficiency as previously proposed. We provide a new and simple hypothesis for explaining the strong incompatibility phenotype based on the timing of replication of low-copy number plasmids.


Assuntos
Fator F/genética , Centrômero/genética , Replicação do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Dosagem de Genes , Microscopia de Fluorescência , Mutação
8.
FEMS Microbiol Rev ; 48(1)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38142222

RESUMO

Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.


Assuntos
Proteínas de Bactérias , Segregação de Cromossomos , Receptores Fc , DNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo
9.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36786449

RESUMO

The characteristics of the parABS system in polyploid bacteria are barely understood. We initially analyzed the physiological functions and mechanisms of the megaplasmid parABSm system in the thermophilic polyploid bacterium Thermus thermophilus. Deletion of parABm was possible only when a plasmid-born copy of parABm was provided, indicating that these genes are conditionally essential. The cell morphology of the parABm deletion mutant (ΔparABm) was changed to some extent, and in certain extra-large or twisted cells, the nucleoids were dispersed and damaged. Compared with that of the wild type, the frequency of anucleate cells was significantly increased. Genome content analyses showed that ΔparABm had lost ∼160 kb of megaplasmid and ∼23 kb of chromosomal sequences, respectively. Genome fluorescent tagging and PFGE experiments demonstrated that the truncated megaplasmid was frequently interlinked and could not be segregated correctly; thus, certain daughter cells eventually lost the entire megaplasmid and became twisted or enlarged with damaged nucleoids. Further, we found that when the megaplasmid was lost in these cells, the toxins encoded by the megaplasmid toxin-antitoxin (TA) systems (VapBC64_65 and VapBC142_143) would exert detrimental effects, such as to fragment DNA. Thus, parABSm might ensure the existence of these TA systems, thereby preventing genomic degradation. Together, our results suggested that in T. thermophilus, the megaplasmid-encoded parABS system plays an essential role in the megaplasmid partitioning process; also it is an important determination factor for the genome integrity maintenance.


Assuntos
Genoma , Thermus thermophilus , Humanos , Thermus thermophilus/genética , Plasmídeos/genética , Genômica , Poliploidia
10.
Genes (Basel) ; 13(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35627261

RESUMO

Partition systems are widespread among bacterial chromosomes. They are composed of two effectors, ParA and ParB, and cis acting sites, parS, located close to the replication origin of the chromosome (oriC). ParABS participate in chromosome segregation, at least in part because they serve to properly position sister copies of oriC. A fourth element, located at cell poles, is also involved in some cases, such as HubP for the ParABS1 system of Vibrio cholerae chromosome 1 (ch1). The polar anchoring of oriC of ch1 (oriC1) is lost when HubP or ParABS1 are inactivated. Here, we report that in the absence of HubP, ParABS1 actively maintains oriC1 at mid-cell, leading to the subcellular separation of the two ch1 replication arms. We further show that parS1 sites ectopically inserted in chromosome 2 (ch2) stabilize the inheritance of this replicon in the absence of its endogenous partition system, even without HubP. We also observe the positioning interference between oriC1 and oriC of ch2 regions when their positionings are both driven by ParABS1. Altogether, these data indicate that ParABS1 remains functional in the absence of HubP, which raises questions about the role of the polar anchoring of oriC1 in the cell cycle.


Assuntos
Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos/genética , Cromossomos Bacterianos/genética , Origem de Replicação/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
11.
Elife ; 112022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374535

RESUMO

The faithful segregation and inheritance of bacterial chromosomes and low-copy number plasmids requires dedicated partitioning systems. The most common of these, ParABS, consists of ParA, a DNA-binding ATPase and ParB, a protein that binds to centromeric-like parS sequences on the DNA cargo. The resulting nucleoprotein complexes are believed to move up a self-generated gradient of nucleoid-associated ParA. However, it remains unclear how this leads to the observed cargo positioning and dynamics. In particular, the evaluation of models of plasmid positioning has been hindered by the lack of quantitative measurements of plasmid dynamics. Here, we use high-throughput imaging, analysis and modelling to determine the dynamical nature of these systems. We find that F plasmid is actively brought to specific subcellular home positions within the cell with dynamics akin to an over-damped spring. We develop a unified stochastic model that quantitatively explains this behaviour and predicts that cells with the lowest plasmid concentration transition to oscillatory dynamics. We confirm this prediction for F plasmid as well as a distantly-related ParABS system. Our results indicate that ParABS regularly positions plasmids across the nucleoid but operates just below the threshold of an oscillatory instability, which according to our model, minimises ATP consumption. Our work also clarifies how various plasmid dynamics are achievable in a single unified stochastic model. Overall, this work uncovers the dynamical nature of plasmid positioning by ParABS and provides insights relevant for chromosome-based systems.


Assuntos
Adenosina Trifosfatases , Cromossomos Bacterianos , Plasmídeos/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Adenosina Trifosfatases/metabolismo , Centrômero/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo
12.
Elife ; 112022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36062913

RESUMO

Three-component ParABS partition systems ensure stable inheritance of many bacterial chromosomes and low-copy-number plasmids. ParA localizes to the nucleoid through its ATP-dependent nonspecific DNA-binding activity, whereas centromere-like parS-DNA and ParB form partition complexes that activate ParA-ATPase to drive the system dynamics. The essential parS sequence arrangements vary among ParABS systems, reflecting the architectural diversity of their partition complexes. Here, we focus on the pSM19035 plasmid partition system that uses a ParBpSM of the ribbon-helix-helix (RHH) family. We show that parSpSM with four or more contiguous ParBpSM-binding sequence repeats is required to assemble a stable ParApSM-ParBpSM complex and efficiently activate the ParApSM-ATPase, stimulating complex disassembly. Disruption of the contiguity of the parSpSM sequence array destabilizes the ParApSM-ParBpSM complex and prevents efficient ATPase activation. Our findings reveal the unique architecture of the pSM19035 partition complex and how it interacts with nucleoid-bound ParApSM-ATP.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Centrômero , DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Plasmídeos
13.
Cell Rep ; 40(9): 111273, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044845

RESUMO

Chromosomes readily unlink and segregate to daughter cells during cell division, highlighting a remarkable ability of cells to organize long DNA molecules. SMC complexes promote DNA organization by loop extrusion. In most bacteria, chromosome folding initiates at dedicated start sites marked by the ParB/parS partition complexes. Whether SMC complexes recognize a specific DNA structure in the partition complex or a protein component is unclear. By replacing genes in Bacillus subtilis with orthologous sequences from Streptococcus pneumoniae, we show that the three subunits of the bacterial Smc complex together with the ParB protein form a functional module that can organize and segregate foreign chromosomes. Using chimeric proteins and chemical cross-linking, we find that ParB directly binds the Smc subunit. We map an interface to the Smc joint and the ParB CTP-binding domain. Structure prediction indicates how the ParB clamp presents DNA to the Smc complex, presumably to initiate DNA loop extrusion.


Assuntos
Proteínas de Bactérias , Proteínas de Ciclo Celular , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
14.
Front Microbiol ; 12: 685687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220773

RESUMO

The process of DNA segregation, the redistribution of newly replicated genomic material to daughter cells, is a crucial step in the life cycle of all living systems. Here, we review DNA segregation in bacteria which evolved a variety of mechanisms for partitioning newly replicated DNA. Bacterial species such as Caulobacter crescentus and Bacillus subtilis contain pushing and pulling mechanisms that exert forces and directionality to mediate the moving of newly synthesized chromosomes to the bacterial poles. Other bacteria such as Escherichia coli lack such active segregation systems, yet exhibit a spontaneous de-mixing of chromosomes due to entropic forces as DNA is being replicated under the confinement of the cell wall. Furthermore, we present a synopsis of the main players that contribute to prokaryotic genome segregation. We finish with emphasizing the importance of bottom-up approaches for the investigation of the various factors that contribute to genome segregation.

15.
Elife ; 102021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34250901

RESUMO

Faithful segregation of bacterial chromosomes relies on the ParABS partitioning system and the SMC complex. In this work, we used single-molecule techniques to investigate the role of cytidine triphosphate (CTP) binding and hydrolysis in the critical interaction between centromere-like parS DNA sequences and the ParB CTPase. Using a combined optical tweezers confocal microscope, we observe the specific interaction of ParB with parS directly. Binding around parS is enhanced by the presence of CTP or the non-hydrolysable analogue CTPγS. However, ParB proteins are also detected at a lower density in distal non-specific DNA. This requires the presence of a parS loading site and is prevented by protein roadblocks, consistent with one-dimensional diffusion by a sliding clamp. ParB diffusion on non-specific DNA is corroborated by direct visualization and quantification of movement of individual quantum dot labelled ParB. Magnetic tweezers experiments show that the spreading activity, which has an absolute requirement for CTP binding but not hydrolysis, results in the condensation of parS-containing DNA molecules at low nanomolar protein concentrations.


Assuntos
Proteínas de Bactérias/metabolismo , Citidina Trifosfato/metabolismo , DNA Bacteriano/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Centrômero/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos , Hidrólise , Ligação Proteica , Pirofosfatases/metabolismo
16.
Elife ; 102021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34346312

RESUMO

SMC complexes are widely conserved ATP-powered DNA-loop-extrusion motors indispensable for organizing and faithfully segregating chromosomes. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes. Here, we uncover several factors that influence bacterial chromosome organization by modulating the probability of such clashes. These factors include the number, the strength, and the distribution of Smc loading sites, the residency time on the chromosome, the translocation rate, and the cellular abundance of Smc complexes. By studying various mutants, we show that these parameters are fine-tuned to reduce the frequency of encounters between Smc complexes, presumably as a risk mitigation strategy. Mild perturbations hamper chromosome organization by causing Smc collisions, implying that the cellular capacity to resolve them is limited. Altogether, we identify mechanisms that help to avoid Smc collisions and their resolution by Smc traversal or other potentially risky molecular transactions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Cromossomos Bacterianos , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo
17.
Genes (Basel) ; 11(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081159

RESUMO

Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors-active partitioning, toxin-antitoxin and conjugational transfer-are all involved in the prevalence of pESBL in the E. coli population.


Assuntos
Conjugação Genética , Infecções por Escherichia coli/transmissão , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Transferência Genética Horizontal , Plasmídeos/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Humanos , Sistemas Toxina-Antitoxina/genética
18.
Curr Biol ; 29(18): 3018-3028.e4, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31474535

RESUMO

All living organisms require accurate segregation of their genetic material. However, in microbes, chromosome segregation is less understood than replication and cell division, which makes its decipherment a compelling research frontier. Furthermore, it has only been studied in free-living microbes so far. Here, we investigated this fundamental process in a rod-shaped symbiont, Candidatus Thiosymbion oneisti. This gammaproteobacterium divides longitudinally as to form a columnar epithelium ensheathing its nematode host. We hypothesized that uninterrupted host attachment would affect bacterial chromosome dynamics and set out to localize specific chromosomal loci and putative DNA-segregating proteins by fluorescence in situ hybridization and immunostaining, respectively. First, DNA replication origins (ori) number per cell demonstrated symbiont monoploidy. Second, we showed that sister ori segregate diagonally prior to septation onset. Moreover, the localization pattern of the centromere-binding protein ParB recapitulates that of ori, and consistently, we showed recombinant ParB to specifically bind an ori-proximal site (parS) in vitro. Third, chromosome replication ends prior to cell fission, and as the poles start to invaginate, termination of replication (ter) sites localize medially, at the leading edges of the growing septum. They then migrate to midcell, concomitantly with septation progression and until this is completed. In conclusion, we propose that symbiont ParB might drive chromosome segregation along the short axis and that tethering of sister ter regions to the growing septum mediates their migration along the long axis. Crucially, active bidimensional segregation of the chromosome allows transgenerational maintenance of its configuration, and therefore, it may represent an adaptation to symbiosis. VIDEO ABSTRACT.


Assuntos
Chromatiaceae/genética , Segregação de Cromossomos/fisiologia , Orientação Espacial/fisiologia , Proteínas de Bactérias/genética , Divisão Celular/fisiologia , Centrômero/metabolismo , Segregação de Cromossomos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA/genética , Gammaproteobacteria/genética , Hibridização in Situ Fluorescente/métodos , Origem de Replicação/genética
19.
J Mol Biol ; 431(5): 928-938, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30664868

RESUMO

We review the key role played by mathematical modeling in elucidating two center-finding patterning systems in Escherichia coli: midcell division positioning by the MinCDE system and DNA partitioning by the ParABS system. We focus particularly on how, despite much experimental effort, these systems were simply too complex to unravel by experiments alone, and instead required key injections of quantitative, mathematical thinking. We conclude the review by analyzing the frequency of modeling approaches in microbiology over time. We find that while such methods are increasing in popularity, they are still probably heavily under-utilized for optimal progress on complex biological questions.


Assuntos
Divisão Celular/fisiologia , Escherichia coli/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Teóricos
20.
Methods Mol Biol ; 1805: 271-289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971723

RESUMO

With single-molecule localization microscopy (SMLM) it is possible to reveal the internal composition, architecture, and dynamics of molecular machines and large cellular complexes. SMLM remains technically challenging, and frequently its implementation requires tailored experimental conditions that depend on the complexity of the subcellular structure of interest. Here, we describe two simple, robust, and high-throughput protocols to study molecular motors and machineries responsible for chromosome transport and organization in bacteria using 2D- and 3D-SMLM.


Assuntos
Bacillus subtilis/metabolismo , DNA Bacteriano/metabolismo , Replicação do DNA , Imageamento Tridimensional , Microfluídica , Esporos Bacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA