RESUMO
BACKGROUND: Consumers should show strong spatial preferences when foraging in environments where food availability is highly heterogeneous and predictable. Postdispersal granivores face this scenario in most arid areas, where soil seed bank abundance and composition associates persistently with vegetation structure at small scales (decimetres to metres). Those environmental features should be exploited as useful pre-harvest information, at least to avoid patches predicted to be poor. However, we did not find the expected spatial association in the algarrobal of the central Monte desert by observing foraging seed-eating birds, a field technique influenced by how much they exploit visited patches. In this work we tested if the first stage of foraging by granivorous birds (patch visit, encounter or exploration) is positively associated with environmental indicators of patch quality by recording the removal of single seeds from 300 scattered experimental devices during seasonal trials. Spatial selectivity was analysed by comparing the structural characteristics of used vs. available microhabitats, and evaluated against bottom-up and top-down hypotheses based on our previous knowledge on local seed bank abundance, composition and dynamics. Their foraging activity was also explored for spatial autocorrelation and environmental correlates at bigger scales. RESULTS: Postdispersal granivorous birds were less selective in their use of foraging space than expected if microhabitat appearance were providing them relevant information to guide their search for profitable foraging patches. No microhabitat type, as defined by their vegetation structure and soil cover, remained safe from bird exploration. Analyses at bigger temporal and spatial scales proved more important to describe heterogeneity in seed removal. CONCLUSIONS: Closeness to tall trees, probably related to bird territoriality and reproduction or to their perception of predation risk, seemed to determine a first level of habitat selection, constraining explorable space. Then, microhabitat openness (rather than seed abundance) exerted some positive influence on which patches were more frequently visited among those accessible. Selective patterns by birds at small scales were closer to our predictions of a top-down spatial effect, with seed consumption creating or strengthening (and not responding to) the spatial pattern and dynamics of the seed bank.
Assuntos
Aves , Ecossistema , Animais , Comportamento Predatório , Solo , ÁrvoresRESUMO
When prey are scarce, planktivorous fish and other predators feeding on tiny prey should forage within prey-rich patches to attain a net food intake above the ambient mean food concentrations. If they can indeed locate prey-rich patches efficiently, then a patchy distribution of planktonic prey should lead to: (1) an increase in the overall per capita food intake, and (2) greater variability among predators in prey-capture rate due to differences in arrival times. Both phenomena were observed in 34 daily feeding sessions with a cohort of juvenile rudd held in twin experimental systems, each housing the same number of fish free to move in a loop of ten interconnected 200-L tanks. The fish were fed daily with equal numbers of planktonic prey (Artemia nauplii), offered either in a homogeneous or patchy distribution. To simulate low and high temperatures that represent potential global warming scenarios, the feeding protocol was replicated at 16, 21 and 26 °C, on each occasion following a 3-day period of fish acclimation. Up to 40-70 % of fish in the system with the patchy prey distribution assembled rapidly in the high-prey-density tank, the capture rate of first arrivals being up to 60 prey min(-1) at 26 °C, orders of magnitude greater than that of latecomers. The overall capture rates were higher in the system with patchy prey, regardless of the temperature. At the highest temperature (26 °C), the fish located the high-prey-density tank in less than half the time taken at the lowest temperature (16 °C, Q(10) > 2).
Assuntos
Ingestão de Alimentos/fisiologia , Peixes/fisiologia , Temperatura Alta , Distribuição Animal , Animais , Artemia/fisiologia , Temperatura Baixa , Aquecimento Global , Plâncton/fisiologia , Comportamento PredatórioRESUMO
BACKGROUND: Habituation, a form of non-associative learning, has several well-defined characteristics that apply to a wide range of physiological and behavioral responses in many organisms. In classic patch time allocation models, habituation is considered to be a major mechanistic component of parasitoid behavioral strategies. However, parasitoid behavioral responses to host cues have not previously been tested for the known, specific characteristics of habituation. METHODS: In the laboratory, we tested whether the foraging behavior of the egg parasitoid Trissolcus basalis shows specific characteristics of habituation in response to consecutive encounters with patches of host (Nezara viridula) chemical contact cues (footprints), in particular: (i) a training interval-dependent decline in response intensity, and (ii) a training interval-dependent recovery of the response. RESULTS: As would be expected of a habituated response, wasps trained at higher frequencies decreased their behavioral response to host footprints more quickly and to a greater degree than those trained at low frequencies, and subsequently showed a more rapid, although partial, recovery of their behavioral response to host footprints. This putative habituation learning could not be blocked by cold anesthesia, ingestion of an ATPase inhibitor, or ingestion of a protein synthesis inhibitor. DISCUSSION: Our study provides support for the assumption that diminishing responses of parasitoids to chemical indicators of host presence constitutes habituation as opposed to sensory fatigue, and provides a preliminary basis for exploring the underlying mechanisms.