Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 141: 104941, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32422281

RESUMO

In recent years, substantial evidence has emerged to suggest that spreading of pathological proteins contributes to disease pathology in numerous neurodegenerative disorders. Work from our laboratory and others have shown that, despite its strictly genetic nature, Huntington's disease (HD) may be another condition in which this mechanism contributes to pathology. In this study, we set out to determine if the mutant huntingtin protein (mHTT) present in post-mortem brain tissue derived from HD patients can induce pathology in mice and/or non-human primates. For this, we performed three distinct sets of experiments where homogenates were injected into the brains of adult a) Wild-type (WT) and b) BACHD mice or c) non-human primates. Neuropathological assessments revealed that, while changes in the endogenous huntingtin were not apparent, mHTT could spread between cellular elements and brain structures. Furthermore, behavioural differences only occurred in the animal model of HD which already overexpressed mHTT. Taken together, our results indicate that mHTT derived from human brains has only a limited capacity to propagate between cells and does not depict prion-like characteristics. This contrasts with recent work demonstrating that other forms of mHTT - such as fibrils of a pathological polyQ length or fibroblasts and induced pluripotent stem cells derived from HD cases - can indeed disseminate disease throughout the brain in a prion-like fashion.


Assuntos
Encéfalo/patologia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Agregação Patológica de Proteínas , Animais , Comportamento Animal , Encéfalo/metabolismo , Criança , Feminino , Humanos , Proteína Huntingtina/administração & dosagem , Macaca mulatta , Camundongos Endogâmicos C57BL , Mutação , Neurônios/patologia
2.
Neurobiol Dis ; 141: 104951, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32439599

RESUMO

In order to model various aspects of Huntington's disease (HD) pathology, in particular protein spread, we administered adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or GFP coupled to HTT-Exon1 (19Q or 103Q) to the central nervous system of adult wild-type (WT) mice and non-human primates. All animals underwent behavioral testing and post-mortem analyses to determine the long-term consequences of AAV injection. Both mice and non-human primates demonstrated behavioral changes at 2-3 weeks post-surgery. In mice, these changes were absent after 3 months while in non-human primates, they persisted in the majority of tested animals. Post-mortem analysis revealed that spreading of the aggregates was limited, although the virus did spread between synaptically-connected brain regions. Despite circumscribed spreading, the presence of mHTT generated changes in endogenous huntingtin (HTT) levels in both models. Together, these results suggest that viral expression of mHTTExon1 can induce spreading and seeding of HTT in both mice and non-human primates.


Assuntos
Dependovirus/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Agregação Patológica de Proteínas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA