Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cell ; 184(25): 6119-6137.e26, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34890551

RESUMO

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
2.
Mol Cancer ; 23(1): 139, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970106

RESUMO

BACKGROUND: Radioresistance is the leading cause of death in advanced cervical cancer (CC). Dysregulation of RNA modification has recently emerged as a regulatory mechanism in radiation and drug resistance. We aimed to explore the biological function and clinical significance of 5-methylcytosine (m5C) in cervical cancer radiosensitivity. METHODS: The abundance of RNA modification in radiotherapy-resistant and sensitive CC specimens was quantified by liquid chromatography-tandem mass spectrometry. The essential RNA modification-related genes involved in CC radiosensitivity were screened via RNA sequencing. The effect of NSUN6 on radiosensitivity was verified in CC cell lines, cell-derived xenograft (CDX), and 3D bioprinted patient-derived organoid (PDO). The mechanisms of NSUN6 in regulating CC radiosensitivity were investigated by integrative m5C sequencing, mRNA sequencing, and RNA immunoprecipitation. RESULTS: We found a higher abundance of m5C modification in resistant CC samples, and NSUN6 was the essential m5C-regulating gene concerning radiosensitivity. NSUN6 overexpression was clinically correlated with radioresistance and poor prognosis in cervical cancer. Functionally, higher NSUN6 expression was associated with radioresistance in the 3D PDO model of cervical cancer. Moreover, silencing NSUN6 increased CC radiosensitivity in vivo and in vitro. Mechanistically, NDRG1 was one of the downstream target genes of NSUN6 identified by integrated m5C-seq, mRNA-seq, and functional validation. NSUN6 promoted the m5C modification of NDRG1 mRNA, and the m5C reader ALYREF bound explicitly to the m5C-labeled NDRG1 mRNA and enhanced NDRG1 mRNA stability. NDRG1 overexpression promoted homologous recombination-mediated DNA repair, which in turn led to radioresistance in cervical cancer. CONCLUSIONS: Aberrant m5C hypermethylation and NSUN6 overexpression drive resistance to radiotherapy in cervical cancer. Elevated NSUN6 expression promotes radioresistance in cervical cancer by activating the NSUN6/ALYREF-m5C-NDRG1 pathway. The low expression of NSUN6 in cervical cancer indicates sensitivity to radiotherapy and a better prognosis.


Assuntos
5-Metilcitosina , Proteínas de Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , RNA Mensageiro , Tolerância a Radiação , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Humanos , Feminino , Tolerância a Radiação/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Metiltransferases/genética , Metiltransferases/metabolismo
3.
Cancer Sci ; 115(4): 1283-1295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348576

RESUMO

Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in circulating tumor deoxyribonucleic acid (ctDNA) have been reported as representative noninvasive prognostic markers for pancreatic ductal adenocarcinoma (PDAC). Here, we aimed to evaluate single KRAS mutations as prognostic and predictive biomarkers, with an emphasis on potential therapeutic approaches to PDAC. A total of 128 patients were analyzed for multiple or single KRAS mutations (G12A, G12C, G12D, G12R, G12S, G12V, and G13D) in their tumors and plasma using droplet digital polymerase chain reaction (ddPCR). Overall, KRAS mutations were detected by multiplex ddPCR in 119 (93%) of tumor DNA and 68 (53.1%) of ctDNA, with a concordance rate of 80% between plasma ctDNA and tumor DNA in the metastatic stage, which was higher than the 44% in the resectable stage. Moreover, the prognostic prediction of both overall survival (OS) and progression-free survival (PFS) was more relevant using plasma ctDNA than tumor DNA. Further, we evaluated the selective tumor-suppressive efficacy of the KRAS G12C inhibitor sotorasib in a patient-derived organoid (PDO) from a KRAS G12C-mutated patient using a patient-derived xenograft (PDX) model. Sotorasib showed selective inhibition in vitro and in vivo with altered tumor microenvironment, including fibroblasts and macrophages. Collectively, screening for KRAS single mutations in plasma ctDNA and the use of preclinical models of PDO and PDX with genetic mutations would impact precision medicine in the context of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Biomarcadores Tumorais/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , DNA de Neoplasias/genética , Mutação , Microambiente Tumoral
4.
Pharmacol Res ; 209: 107420, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293586

RESUMO

Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory ß subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 µM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.

5.
Cancer Sci ; 114(4): 1672-1685, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36511816

RESUMO

The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.


Assuntos
Carcinoma de Células Escamosas , Genoma , Humanos , Cromatina/genética , Fatores de Transcrição/genética , Epigênese Genética , Carcinoma de Células Escamosas/genética , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo
6.
Biol Res ; 56(1): 63, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041132

RESUMO

In December 2022 the US Food and Drug Administration (FDA) removed the requirement that drugs in development must undergo animal testing before clinical evaluation, a declaration that now demands the establishment and verification of ex vivo preclinical models that closely represent tumor complexity and that can predict therapeutic response. Fortunately, the emergence of patient-derived organoid (PDOs) culture has enabled the ex vivo mimicking of the pathophysiology of human tumors with the reassembly of tissue-specific features. These features include histopathological variability, molecular expression profiles, genetic and cellular heterogeneity of parental tissue, and furthermore growing evidence suggests the ability to predict patient therapeutic response. Concentrating on the highly lethal and heterogeneous gastrointestinal (GI) tumors, herein we present the state-of-the-art and the current methodology of PDOs. We highlight the potential additions, improvements and testing required to allow the ex vivo of study the tumor microenvironment, as well as offering commentary on the predictive value of clinical response to treatments such as chemotherapy and immunotherapy.


Assuntos
Neoplasias Gastrointestinais , Estados Unidos , Animais , Humanos , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Organoides/metabolismo , Organoides/patologia , Microambiente Tumoral
7.
Oral Dis ; 29(3): 913-922, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34741375

RESUMO

OBJECTIVE: Cancer-associated fibroblasts (CAFs) are abundantly infiltrated in oral squamous cell carcinoma (OSCC), but the contact-dependent mechanisms that regulate CAFs phenotype in precursor cells, such as paracancerous fibroblasts (PFs), remain unclear. Here, a fibroblast-attached organoid (FAO) model was initiated to determine phenotype transition of fibroblasts triggered by contact with OSCC. MATERIAL AND METHODS: Organoids and fibroblasts were generated using OSCC and adjacent tissues. Cell-clusters containing fibroblasts and tumour cells were aggregated to allow for FAOs expansion. Immunoblotting assay was performed to compare expression of Notch intracellular domain (NICD) in CAFs and PFs. Colony formation assay was employed to evaluate morphological activation of fibroblasts. RESULTS: Compared to traditional 3D co-culture, FAOs better modulated the spatial distribution of fibroblasts with tumour nests. The presence of CAFs with multiple branches was stably observed in FAOs during serial passage. Incorporation with organoids promoted the ability of PFs to form multiple branches. Immunoblotting assay confirmed higher NICD level in CAFs than PFs. Treatment with Notch inhibitor, N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (i.e. DAPT) blocked morphological activation of fibroblasts incorporated into FAO. CONCLUSION: We developed a robust strategy to study contact-dependent mechanisms underlying tumour-stromal interaction, and suggested that Notch activity contributes to biogenesis of OSCC-associated fibroblasts.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/patologia , Fibroblastos , Fenótipo , Organoides/metabolismo , Organoides/patologia , Linhagem Celular Tumoral
8.
Dig Endosc ; 35(7): 918-926, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37522250

RESUMO

Considering the critical roles of cancer-associated fibroblasts (CAFs) in pancreatic cancer, recent studies have attempted to incorporate stromal elements into organoid models to recapitulate the tumor microenvironment. This study aimed to evaluate the feasibility of patient-derived organoid (PDO) and CAF cultures by using single-pass endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) samples from prospectively enrolled pancreatic cancer patients. The obtained samples were split into two portions for PDO and CAF cultures. PDOs and CAFs were cultured successfully in 54.4% (31/57) and 47.4% (27/57) of the cases, respectively. Both components were established in 21 cases (36.8%). Various clinicopathologic factors, including the tumor size, tumor location, clinical stage, histologic subtype, and tumor differentiation, did not influence the PDO establishment. Instead, the presence of necrosis in tumor samples was associated with initial PDO generation but no further propagation beyond passage 5 (P = 0.024). The "poorly cohesive cell carcinoma pattern" also negatively influenced the PDO establishment (P = 0.018). Higher stromal proportion in tumor samples was a decisive factor for successful CAF culture (P = 0.005). Our study demonstrated that the coestablishment of PDOs and CAFs is feasible even with a single-pass EUS-FNB sample, implying an expanding role of endoscopists in future precision medicine.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/patologia , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Neoplasias Pancreáticas/patologia , Organoides/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
9.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834057

RESUMO

The use of patient-derived tumor tissues and cells has led to significant advances in personalized cancer therapy and precision medicine. The advent of genomic sequencing technologies has enabled the comprehensive analysis of tumor characteristics. The three-dimensional tumor organoids derived from self-organizing cancer stem cells are valuable ex vivo models that faithfully replicate the structure, unique features, and genetic characteristics of tumors. These tumor organoids have emerged as innovative tools that are extensively employed in drug testing, genome editing, and transplantation to guide personalized therapy in clinical settings. However, a major limitation of this emerging technology is the absence of a tumor microenvironment that includes immune and stromal cells. The therapeutic efficacy of immune checkpoint inhibitors has underscored the importance of immune cells, particularly cytotoxic T cells that infiltrate the vicinity of tumors, in patient prognosis. To address this limitation, co-culture techniques combining tumor organoids and T cells have been developed, offering diverse avenues for studying individualized drug responsiveness. By integrating cellular components of the tumor microenvironment, including T cells, into tumor organoid cultures, immuno-oncology has embraced this technology, which is rapidly advancing. Recent progress in co-culture models of tumor organoids has allowed for a better understanding of the advantages and limitations of this novel model, thereby exploring its full potential. This review focuses on the current applications of organoid-T cell co-culture models in cancer research and highlights the remaining challenges that need to be addressed for its broader implementation in anti-cancer therapy.


Assuntos
Neoplasias , Humanos , Técnicas de Cocultura , Neoplasias/patologia , Oncologia , Organoides , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
10.
Pharmacol Res ; 179: 106232, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462012

RESUMO

With the common use of poly ADP-ribose polymerase inhibitors (PARPi) for the man-agement of epithelial ovarian cancer (EOC) across the treatment life cycle, there is a critical need for the development of functional tests, as a complementary to genomic assays, in the study of PARPi sensitivity and resistance. Patient-derived organoids (PDOs) are found feasible for rapid functional testing and predicting drug response. Here, we established a series of PDOs from EOC and tested the sensitivity of seven cases to various agents including PARPi. PDOs recapitulated patient clinical response to platinum chemotherapy and displayed drug response heterogeneity to targeted agents including PARPi. Of three PDOs harboring mutational signature of homologous recombination repair (HRR) deficiency, two were PARPi sensitive while one was inherent resistant. Another PDO derived from a patient who relapsed during olaparib maintenance therapy was found acquired resistant to PARPi. Subsequent functional analysis revealed the potential resistant mechanisms related to replication fork protection and HRR functional restoration, and combination strategies targeting the mechanisms could reverse the resistance. Our research demonstrated the capacity of EOC PDOs for evaluating the sensitivity to PARPi under different settings, exploring mechanisms of resistance, and identifying effective combined strategies, which has implications for the clinical application of PARPi.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Organoides , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
11.
Cell Mol Life Sci ; 78(21-22): 7009-7024, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34609520

RESUMO

The majority of colorectal cancer (CRC) patients carry mutations in the APC gene, which lead to the unregulated activation of the Wnt pathway. Extracellular vesicles (EV) are considered potential therapeutic tools. Although CRC is a genetically heterogeneous disease, the significance of the intra-tumor heterogeneity in EV uptake of CRC cells is not yet known. By using mouse and patient-derived organoids, the currently available best model of capturing cellular heterogeneity, we found that Apc mutation induced the expression of interferon-induced transmembrane protein 1 (Ifitm1), a membrane protein that plays a major role in cellular antiviral responses. Importantly, organoids derived from IFITM1high CRC cells contained more proliferating cells and they had a markedly reduced uptake of fibroblast EVs as compared to IFITM1low/- cells. In contrast, there was no difference in the intensity of EV release between CRC subpopulations with high and low IFITM1 levels. Importantly, the difference in cell proliferation between these two subpopulations disappeared in the presence of fibroblast-derived EVs, proving the functional relevance of the enhanced EV uptake by IFITM1low CRC cells. Furthermore, inactivating IFITM1 resulted in an enhanced EV uptake, highlighting the importance of this molecule in establishing the cellular difference for EV effects. Collectively, we identified CRC cells with functional difference in their EV uptake ability that must be taken into consideration when using EVs as therapeutic tools for targeting cancer cells.


Assuntos
Antígenos de Diferenciação/genética , Neoplasias Colorretais/genética , Vesículas Extracelulares/genética , Animais , Transporte Biológico/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Organoides/fisiologia , Via de Sinalização Wnt/genética
12.
World J Surg Oncol ; 20(1): 37, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177071

RESUMO

BACKGROUND: As reported, preclinical animal models differ greatly from the human body. The evaluation model may be the colossal obstacle for scientific research and anticancer drug development. Therefore, it is essential to propose efficient evaluation systems similar to clinical practice for cancer research. MAIN BODY: While it has emerged for decades, the development of patient-derived xenografts, patient-derived organoid and patient-derived cell used to be limited. As the requirements for anticancer drug evaluation increases, patient-derived models developed rapidly recently, which is widely applied in basic research, drug development, and clinical application and achieved remarkable progress. However, there still lack systematic comparison and summarize reports for patient-derived models. In the current review, the development, applications, strengths, and challenges of patient-derived models in cancer research were characterized. CONCLUSION: Patient-derived models are an indispensable approach for cancer research and human health.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Xenoenxertos , Humanos , Neoplasias/tratamento farmacológico , Organoides , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biochem Biophys Res Commun ; 546: 169-177, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33582561

RESUMO

Microwave ablation is a first-line treatment of small hepatocellular carcinoma (HCC), while incomplete ablation induces recurrence and metastasis. However, its underlying mechanism remains largely unexplored. Here we reported that sublethal heat treatment (46 °C) strongly promoted migration and EMT transition in HCC cells. Mechanistic investigation revealed that compared with 37 °C, HCC cells treated with 46 °C expressed higher level of CD47. Knockdown of CD47 significantly attenuated sublethal heat treatment stimulated migration and EMT transition. In addition, METTL3 which is the key enzyme of m6A modification was also induced by 46 °C treatment and triggered CD47 expression in HCC cells. Moreover, CD47 mRNA degradation was further proved to be stabled in the IGF2BP1-dependent manner. Importantly, sublethal heat treatment stimulated CD47 expression and EMT transition were also confirmed in patient-derived organoid. Taken together, our study suggests that METTL3/IGF2BP1/CD47 mediated EMT transition contributes to the incomplete ablation induced metastasis in HCC cells. Moreover, these findings identify the METTL3/IGF2BP1/CD47 axis as a potential therapeutic target for the microwave ablation and shed new lights on the crosstalk between incomplete heat ablation and RNA methylation.


Assuntos
Antígeno CD47/metabolismo , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal , Temperatura Alta , Neoplasias Hepáticas/patologia , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Humanos , Neoplasias Hepáticas/metabolismo , Micro-Ondas , Metástase Neoplásica , Organoides/metabolismo , Organoides/patologia
14.
J Transl Med ; 19(1): 384, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496878

RESUMO

Tumor heterogeneity is a primary cause of treatment failure. However, changes in drug sensitivity over time are not well mapped in cancer. Patient-derived organoids (PDOs) may predict clinical drug responses ex vivo and offer an opportunity to evaluate novel treatment strategies in a personalized fashion. Here we have evaluated spatio-temporal functional and molecular dynamics of five PDO models established after hepatic re-resections and neoadjuvant combination chemotherapies in a patient with microsatellite stable and KRAS mutated metastatic rectal cancer. Histopathological differentiation phenotypes of the PDOs corresponded with the liver metastases, and ex vivo drug sensitivities generally reflected clinical responses and selection pressure, assessed in comparison to a reference data set of PDOs from metastatic colorectal cancers. PDOs from the initial versus the two recurrent metastatic settings showed heterogeneous cell morphologies, protein marker expression, and drug sensitivities. Exploratory analyses of a drug screen library of 33 investigational anticancer agents showed the strongest ex vivo sensitivity to the SMAC mimetic LCL161 in PDOs of recurrent disease compared to those of the initial metastasis. Functional analyses confirmed target inhibition and apoptosis induction in the LCL161 sensitive PDOs from the recurrent metastases. Gene expression analyses indicated an association between LCL161 sensitivity and tumor necrosis factor alpha signaling and RIPK1 gene expression. In conclusion, LCL161 was identified as a possible experimental therapy of a metastatic rectal cancer that relapsed after hepatic resection and standard systemic treatment.


Assuntos
Neoplasias Hepáticas , Neoplasias Retais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Farmacogenética , Proteínas Proto-Oncogênicas p21(ras)/genética , Tiazóis
15.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445467

RESUMO

Ribosome-binding protein 1 (RRBP1) is a potential oncogene in several cancer types. However, the correlation between RRBP1 expression and the prognosis of patients with upper tract urothelial carcinoma (UTUC) remains unclear. In this study, we identified that RRBP1 is associated with carcinogenesis and metastasis in UTUC using a methylation profiling microarray. High correlations between RRBP1 and cancer stages, nodal metastasis status, molecular subtypes, and prognosis in bladder urothelial cancer (BLCA) were found. Aberrant DNA methylation in the gene body region of RRBP1 was determined in UTUC tissues by methylation-specific PCR. RRBP1 expression was significantly increased in UTUC tissues and cell lines, as determined by real-time PCR and immunohistochemistry. RRBP1 depletion significantly reduced BFTC909 cell growth induced by specific shRNA. On the other hand, molecular subtype analysis showed that the expression of RRBP1 was associated with genes related to cell proliferation, epithelial-mesenchymal transition, and basal markers. A patient-derived organoid model was established to analyze patients' responses to different drugs. The expression of RRBP1 was related to chemoresistance. Taken together, these results provide the first evidence that RRBP1 gene body hypomethylation predicts RRBP1 high expression in UTUC. The data highlight the importance of RRBP1 in UTUC malignancy and chemotherapeutic tolerance.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Camundongos , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641562

RESUMO

Oral cancers, hepatocellular carcinoma, and colorectal cancers are the three most common cancers, leading to 18,000 cases of cancer-related mortality in Taiwan per year. To bridge the gap towards clinical translation, we developed a circulating tumor cell (CTC) organoid culture workflow that efficiently expands CTC from patients to test Antrodia Cinnamomea mycelium-derived bioactive compounds. Three ACM-derived bioactive compounds were evaluated for tumor chemosensitization characteristics. Significant and consistent cytotoxic/5-FU sensitizing effects of GKB202 were found on 8 different patient-derived tumors. Acute toxicity profile and hepatic metabolism of GKB202 in rats suggest GKB202 is rapidly cleared by liver and is well tolerated up to the dose of 20 mg/kg. This comprehensive study provides new evidence that liquid fermentation of Antrodia cinnamomea mycelium (ACM) contains bioactive compounds that lead to effective control of CTC, especially when combined with 5-FU. Together, these data suggest ACM-derived GKB202 may be considered for further clinical investigation in the context of 5-FU-based combination therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/uso terapêutico , Polyporales/química , Adulto , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Micélio/química , Organoides , Ratos , Células Tumorais Cultivadas
17.
Gynecol Oncol ; 157(3): 783-792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253045

RESUMO

OBJECTIVE: Cancer patient-derived organoids (PDOs) grow as three dimensional (3D) structures in the presence of extracellular matrix and have been found to represent the original tumor's genetic complexity. In addition, PDOs can be grown and subjected to drug sensitivity testing in a shorter time course and with lesser expense than patient-derived xenograft models. Many patients with recurrent ovarian cancer develop malignant effusions that become refractory to chemotherapy. Since these same patients often present for palliative aspiration of ascites or pleural effusions, there is a potential opportunity to obtain tumor specimens in the form of multicellular spheroids (MCS) present in malignant effusion fluids. Our objective was to develop a short duration culture of MCS from ovarian cancer malignant effusions in conditions selected to support organoid growth and use them as a platform for empirical drug sensitivity testing. METHODS: In this study, malignant effusion specimens were collected from patients with high-grade serous ovarian carcinoma (HGSOC). MCS were recovered and subjected to culture conditions designed to support organoid growth. In a subset of specimens, RNA-sequencing was performed at two time points during the short-term culture to determine changes in transcriptome in response to culture conditions. Organoid induction was also characterized in these specimens using Ki67 staining and histologic analysis. Drug sensitivity testing was performed on all specimens. RESULTS: Our model describes organoids formed within days of primary culture, which can recapitulate the histological features of malignant ascites fluid and can be expanded for at least 6 days. RNA-seq analysis of four patient specimens showed that within 6 days of culture, there was significant up-regulation of genes related to cellular proliferation, epithelial-mesenchymal transition, and KRAS signaling pathways. Drug sensitivity testing identified several agents with therapeutic potential. CONCLUSIONS: Short duration organoid culture of MCS from HGSOC malignant effusions can be used as a platform for empiric drug sensitivity testing. These ex vivo models may be helpful in screening new or existing therapeutic agents prior to individualized treatment options.


Assuntos
Cistadenoma Seroso/patologia , Técnicas de Cultura de Órgãos/métodos , Organoides/fisiopatologia , Idoso , Cistadenoma Seroso/tratamento farmacológico , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
18.
Cell Mol Life Sci ; 76(12): 2463-2476, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31028424

RESUMO

Extracellular vesicles (EVs) are membrane-surrounded structures that transmit biologically important molecules from the releasing to target cells, thus providing a novel intercellular communication mechanism. Since EVs carry their cargo in a protected form and their secretion is generally increased in tumorigenesis, EVs hold a great potential for early cancer diagnosis. By 3D culturing, we provide evidence that colorectal cancer (CRC) patient-derived organoids, representing a state-of-the-art established and essential approach for studying human CRC, is a suitable model for EV analysis. When testing the effects of major factors promoting CRC progression on EV release in the organoid model, we observed that Apc mutation, leading to uncontrolled Wnt activation and thus to tumorigenesis in the vast majority in CRC patients, critically induces EV release by activating the Wnt pathway. Furthermore, the extracellular matrix component collagen, known to accumulate in tumorigenesis, enhances EV secretion as well. Importantly, we show that fibroblast-derived EVs induce colony formation of CRC organoid cells under hypoxia. In contrast, there was no major effect of tumor cell-derived EVs on the activation of fibroblasts. Collectively, our results with CRC and Apc-mutant adenoma organoids identify Apc mutation and collagen deposition as critical factors for increasing EV release from tumors. Furthermore, we provide evidence that stromal fibroblast-derived EVs contribute to tumorigenesis under unfavorable conditions in CRC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/patologia , Vesículas Extracelulares/patologia , Intestinos/patologia , Organoides/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Progressão da Doença , Vesículas Extracelulares/genética , Humanos , Camundongos Endogâmicos C57BL , Mutação , Organoides/metabolismo , Células Tumorais Cultivadas , Via de Sinalização Wnt
19.
Biol Proced Online ; 21: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223292

RESUMO

BACKGROUND: Patient-derived organoids (PDO) technology represents an emerging tool for the study of tumor biology and drug responsiveness, thus being useful to design personalized medicine approaches. Despite several studies and clinical trials are ongoing using PDO from colorectal and pancreatic cancer, only few research papers have been published exploiting PDO from breast cancer. Here, we have developed a new protocol to establish PDO from surgical and biopsy samples. Furthermore, we have set up also the methodologies adopted for culture and morphological evaluations. RESULTS: Surgical and core biopsy specimens collected from 33 patients with diagnosis of breast cancer have been processed using the protocols here described obtaining PDO from cancerous and healthy mammary tissue (when available) in a quick and easy way with good yields. The more critical aspects influencing the yield were the characteristic of the tissue of origin (healthy vs tumor tissue) and the amount of material obtained after enzymatic digestion process. Success rate from healthy samples was about 20,83%, while this percentage was higher in samples from cancer tissue (i.e. 87,5%). Also the morphological characterization of breast cancer PDO by brightfield and transmission electron microscopy has been reported. CONCLUSIONS: Despite obtaining some organoids from a surgical or biopsy specimen is not a difficult procedure, the establishment of a stable organoid line able to grow and replicate, suitable for long-term biobank storage, is not so obvious. A novel, simple and quick procedure to obtain PDO from surgical and biopsy samples is here proposed to achieve high success rate .

20.
Am J Respir Crit Care Med ; 193(3): 288-98, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26509335

RESUMO

RATIONALE: Gene therapy holds promise for a curative mutation-independent treatment applicable to all patients with cystic fibrosis (CF). The various viral vector-based clinical trials conducted in the past have demonstrated safety and tolerance of different vectors, but none have led to a clear and persistent clinical benefit. Recent clinical breakthroughs in recombinant adeno-associated viral vector (rAAV)-based gene therapy encouraged us to reexplore an rAAV approach for CF. OBJECTIVES: We evaluated the preclinical potential of rAAV gene therapy for CF to restore chloride and fluid secretion in two complementary models: intestinal organoids derived from subjects with CF and a CF mouse model, an important milestone toward the development of a clinical rAAV candidate for CF gene therapy. METHODS: We engineered an rAAV vector containing a truncated CF transmembrane conductance regulator (CFTRΔR) combined with a short promoter (CMV173) to ensure optimal gene expression. A rescue in chloride and fluid secretion after rAAV-CFTRΔR treatment was assessed by forskolin-induced swelling in CF transmembrane conductance regulator (CFTR)-deficient organoids and by nasal potential differences in ΔF508 mice. MEASUREMENTS AND MAIN RESULTS: rAAV-CFTRΔR transduction of human CFTR-deficient organoids resulted in forskolin-induced swelling, indicating a restoration of CFTR function. Nasal potential differences demonstrated a clear response to low chloride and forskolin perfusion in most rAAV-CFTRΔR-treated CF mice. CONCLUSIONS: Our study provides robust evidence that rAAV-mediated gene transfer of a truncated CFTR functionally rescues the CF phenotype across the nasal mucosa of CF mice and in patient-derived organoids. These results underscore the clinical potential of rAAV-CFTRΔR in offering a cure for all patients with CF in the future.


Assuntos
Fibrose Cística/terapia , Dependovirus , Terapia Genética/métodos , Vetores Genéticos , Intestinos , Organoides , Animais , Líquidos Corporais/metabolismo , Canais de Cloreto/genética , Cloretos/metabolismo , Colforsina/farmacologia , Fibrose Cística/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Genótipo , Células HeLa , Humanos , Camundongos , Organoides/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA