Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 142(2): 108492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759397

RESUMO

Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , N-Acetilglucosaminiltransferases , Placa Neural , Fenótipo , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Placa Neural/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/metabolismo , Sistemas CRISPR-Cas , Glicosilação , Edição de Genes , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia
2.
J Nanobiotechnology ; 20(1): 511, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463195

RESUMO

Inherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.


Assuntos
Nanopartículas , Doenças Retinianas , Humanos , Sistemas CRISPR-Cas/genética , Estudos Prospectivos , Doenças Retinianas/genética , Doenças Retinianas/terapia , Retina , Terapia Genética
3.
Stem Cell Reports ; 15(4): 999-1013, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32976766

RESUMO

Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.


Assuntos
Fibrilação Atrial/genética , Edição de Genes , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Alelos , Sequência de Bases , Células Clonais , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação , Análise de Célula Única , Processos Estocásticos
4.
Stem Cell Reports ; 13(4): 761-774, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31564644

RESUMO

The first-in-human trial of induced pluripotent stem cell (iPSC)-based autologous transplantation was successfully performed on a female patient with age-related macular degeneration. Here we delineated the base-resolution methylome of the iPSC-derived retinal pigment epithelium (iRPE) used in this trial. The methylome of iRPE closely resembled that of native RPE (nRPE), although partially methylated domains (PMDs) emerged in iRPE but not nRPE. Most differentially methylated regions between iRPE and nRPE appeared to originate from (de)methylation errors during differentiation, whereas errors at reprogramming resulted in aberrant genomic imprinting and X chromosome reactivation. Moreover, non-CpG methylation was prominent in nRPE but not iRPE. Intriguingly, xenotransplantation to mouse remodeled the iRPE methylome to demethylate a subset of suppressed genes and accumulate non-CpG methylation, but failed to resolve PMDs and hypermethylated CpG islands. Although the impacts of these alterations remain elusive, our findings should provide a useful guide for methylome analyses of other iPSC-derived cells.


Assuntos
Epigenoma , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Epitélio Pigmentado da Retina/citologia , Transplante de Células-Tronco , Reprogramação Celular , Biologia Computacional/métodos , Ilhas de CpG , Metilação de DNA , Humanos , Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Degeneração Macular/terapia , Transplante Autólogo , Sequenciamento Completo do Genoma
5.
Stem Cell Reports ; 10(4): 1267-1281, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29526738

RESUMO

Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence.


Assuntos
Ciliopatias/terapia , Terapia Genética , Células-Tronco Pluripotentes Induzidas/patologia , Organoides/patologia , Células Fotorreceptoras/patologia , Retina/patologia , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia , Diferenciação Celular , Ciliopatias/patologia , Ciliopatias/fisiopatologia , Proteínas do Olho/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Células Fotorreceptoras/metabolismo , Canais de Potássio/metabolismo , Retinose Pigmentar/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA