RESUMO
Reversible scavenging, the oceanographic process by which dissolved metals exchange onto and off sinking particles and are thereby transported to deeper depths, has been well established for the metal thorium for decades. Reversible scavenging both deepens the elemental distribution of adsorptive elements and shortens their oceanic residence times in the ocean compared to nonadsorptive metals, and scavenging ultimately removes elements from the ocean via sedimentation. Thus, it is important to understand which metals undergo reversible scavenging and under what conditions. Recently, reversible scavenging has been invoked in global biogeochemical models of a range of metals including lead, iron, copper, and zinc to fit modeled data to observations of oceanic dissolved metal distributions. Nonetheless, the effects of reversible scavenging remain difficult to visualize in ocean sections of dissolved metals and to distinguish from other processes such as biological regeneration. Here, we show that particle-rich "veils" descending from high-productivity zones in the equatorial and North Pacific provide idealized illustrations of reversible scavenging of dissolved lead (Pb). A meridional section of dissolved Pb isotope ratios across the central Pacific shows that where particle concentrations are sufficiently high, such as within particle veils, vertical transport of anthropogenic surface-dissolved Pb isotope ratios toward the deep ocean is manifested as columnar isotope anomalies. Modeling of this effect shows that reversible scavenging within particle-rich waters allows anthropogenic Pb isotope ratios from the surface to penetrate ancient deep waters on timescales sufficiently rapid to overcome horizontal mixing of deep water Pb isotope ratios along abyssal isopycnals.
RESUMO
Lead (Pb) poses a significant risk to infants and children through exposure to contaminated soil and dust. However, there is a lack of information on Pb speciation and distribution at the neighborhood-scale. This work aimed to determine: (1) the distribution of acid-extractable (labile) Pb and other metals ([M]AE) in two neighborhoods in Akron, Ohio (USA) (Summit Lake and West Akron; n = 82 samples); and (2) Pb speciation and potential sources. Total metal concentration ([M]T) and [M]AE was strongly correlated for Pb and Zn (R2 of 0.66 and 0.55, respectively), corresponding to 35% and 33% acid-extractability. Lead and Zn exhibited a strong positive correlation with each other (R2 = 0.56 for MT and 0.68 for MAE). Three types of Pb-bearing phases were observed by electron microscopy: (1) galena (PbS)-like (5-10 µm); (2) paint chip residuals (10-20 µm); and (3) Pb-bearing Fe-oxides (20 µm). Isotope ratio values for PbAE were 1.159 to 1.245 for 206Pb/207Pb, and 1.999 to 2.098 for 208Pb/206Pb, and there was a statistically significant difference between the two neighborhoods (p = 0.010 for 206Pb/207Pb and p = 0.009 for 208Pb/206Pb). Paint and petrol are the dominant sources of Pb, with some from coal and fly ash. Lead speciation and distribution is variable and reflects a complex relationship between the input of primary sources and post-deposition transformations. This work highlights the importance of community science collaborations to expand the reach of soil sampling and establish areas most at risk based on neighborhood-dependent Pb speciation and distribution for targeted remediation.
Assuntos
Carvão Mineral , Solo , Criança , Lactente , Humanos , Ohio , Cinza de Carvão , PoeiraRESUMO
Dispersion of potentially toxic elements associated with efflorescent crusts and mine tailings materials from historical mine sites threaten the environment and human health. Limited research has been done on traceability from historical mining sites in arid and semi-arid regions. Pb isotope systematics was applied to decipher the importance of identifying the mixing of lead sources involved in forming efflorescent salts and the repercussions on traceability. This research assessed mine waste (sulfide-rich and oxide-rich tailings material and efflorescent salts) and street dust from surrounding settlements at a historical mining site in northwestern Mexico, focusing on Pb isotope composition. The isotope data of tailings materials defined a trending line (R2 = 0.9); the sulfide-rich tailings materials and respective efflorescent salts yielded less radiogenic Pb composition, whereas the oxide-rich tailings and respective efflorescent salts yielded relatively more radiogenic compositions, similar to the geogenic component. The isotope composition of street dust suggests the dispersion of tailings materials into the surroundings. This investigation found that the variability of Pb isotope composition in tailings materials because of the geochemical heterogeneity, ranging from less radiogenic to more radiogenic, can add complexity during environmental assessments because the composition of oxidized materials and efflorescent salts can mask the geogenic component, potentially underestimating the influence on the environmental media.
Assuntos
Poeira , Isótopos , Chumbo , Mineração , Chumbo/análise , Isótopos/análise , Poeira/análise , México , Monitoramento Ambiental , Poluentes do Solo/análiseRESUMO
Despite ongoing concerns about trace metal and metalloid (trace metals) exposure risks from indoor dust, there has been limited research examining their sources and relationship to outdoor soils. Here we determine the concentrations and sources for potentially toxic trace metals arsenic (As), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn) and their pathways into homes in Sydney, Australia, using home-matched indoor dust (n = 166), garden soil (n = 166), and road dust samples (n = 51). All trace metals were more elevated indoors versus their matched garden soil counterparts. Indoor Cu and Zn dust concentrations were significantly more enriched than outdoor dusts and soils, indicating indoor sources were more relevant for these elements. By contrast, even though Pb was elevated in indoor dust, garden soil concentrations were correspondingly high, indicating that it remains an important source and pathway for indoor contamination. Elevated concentrations of As, Pb and Zn in garden soil and indoor dust were associated with home age (>50 years), construction materials, recent renovations and deteriorating interior paint. Significant correlations (p < 0.05) between road dust and garden soil Cu concentrations, and those of As and Zn in soil and indoor dust, and Pb across all three media suggest common sources. Scanning electron microscopy (SEM) analysis of indoor dust samples (n = 6) showed that 57% of particles were derived from outdoor sources. Lead isotopic compositions of soil (n = 21) and indoor dust (n = 21) were moderately correlated, confirming the relevance of outdoor contaminants to indoor environments. This study illustrates the source, relationship and fate of trace metals between outdoor and indoor environments. The findings provide insight into understanding and responding to potentially toxic trace metal exposures in the home environment.
Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Exposição Ambiental/análise , Metais Pesados/análise , Ambiente Domiciliar , Chumbo/análise , Oligoelementos/análise , Poluentes do Solo/análise , Zinco/análise , Poeira/análise , Solo , Monitoramento Ambiental , Medição de RiscoRESUMO
Industrial activities release aerosols containing toxic metals into the atmosphere, where they are transported far from their sources, impacting ecosystems and human health. Concomitantly, long-range-transported mineral dust aerosols play a role in Earth's radiative balance and supply micronutrients to iron-limited ecosystems. To evaluate the sources of dust and pollutant aerosols to Alaska following the 2001 phase-out of leaded gasoline in China, we measured Pb-Sr-Nd isotopic compositions of particles collected in 2016 from snow pits across an elevational transect (2180-5240 m-a.s.l) in Denali National Park, USA. We also determined Pb flux and enrichment from 1991-2011 in the Denali ice core (3870 m-a.s.l). Chinese coal-burning and non-ferrous metal smelting account for up to 64% of Pb deposition at our sites, a value consistent across the western Arctic. Pb isotope ratios in the aerosols did not change between 2001 and 2016, despite the ban on lead additives. Emissions estimates demonstrate that industrial activities have more than compensated for the phase-out of leaded gasoline, with China emitting â¼37,000 metric tons year-1 of Pb during 2013-2015, approximately 78% of the Pb from East Asia. The Pb flux to Alaska now equals that measured in southern Greenland during peak pollution from North America.
Assuntos
Poeira , Poluentes Ambientais , Aerossóis/análise , China , Carvão Mineral , Ecossistema , Monitoramento Ambiental , Gasolina , Humanos , Ferro , Isótopos , Chumbo , MicronutrientesRESUMO
Coal combustion residuals (CCRs), in particular, coal fly ash, are one of the major industrial solid wastes in the U.S., and due to their high concentrations of toxic elements, they could pose environmental and human health risks. Yet detecting coal fly ash in the environment is challenging given its small particle size. Here, we explore the utility and sensitivity of using geochemical indicators (trace elements, Ra nuclides, and Pb stable isotopes), combined with physical observation by optical point counting, for detecting the presence of trace levels of coal fly ash particles in surface soils near two coal-fired power plants in North Carolina and Tennessee. Through experimental work, mixing models, and field data, we show that trace elements can serve as a first-order detection tool for fly ash presence in surface soils; however, the accuracy and sensitivity of detection is limited for cases with low fly ash proportion (i.e., <10%) in the soil, which requires the integration of more robust Ra and Pb isotopic tracers. This study revealed the presence of fly ash particles in surface soils from both the recreational and residential areas, which suggests the fugitive emission of fly ash from the nearby coal-fired power plants.
Assuntos
Cinza de Carvão , Carvão Mineral , Carvão Mineral/análise , Cinza de Carvão/análise , Humanos , Resíduos Industriais , Centrais Elétricas , SoloRESUMO
The current study was conducted to assess the level of potentially toxic elements (PTEs) contamination (Cu, Pb, Zn, Cr, As, Cd, and Ni) in surface soils from Arak city. Arak, which is an industrial city, is a prominent center of chemicals, metal/electric, manufacturing factories, and other industries. Forty-three surface soil samples were collected from 0-20 cm after removing the visible surface contamination in the dry season in June 2017. Metal concentrations were found highly variable, ranging from 174-3950 mg/kg for Cu, 181-3740 mg/kg for Pb, 48-186 mg/kg for Zn, 105-1721 mg/kg for Ni, 0.8-0.9 mg/kg for As, 114-1624 mg/kg for Cr, and 3.45-12.36 mg/kg for Cd. The results of geochemical fraction indicated that the main components of Pb, Cr, and Zn at most of the sampling sites are Fe-Mn bound/reducible. Meanwhile, the residual fraction is the dominant fraction of sequence extraction for Ni, Cu, and Cd. Higher values of reducible bound for Pb, Cr, and Zn, as well as a considerable percentage of Ni, Cu, and Cd, imply that the main source of the studied PTEs (except As) in the study area is both anthropogenic and geogenic inputs. The results of principal component analysis (PCA), correlation analysis, enrichment factor (EF), enrichment index (EI), and top enrichment factor (TEF) confirm that Pb, Ni, Cu, Cr, Cd, and Zn had a similar anthropogenic source which is confirmed by geochemical fractionation analysis. Carcinogenic risks (CR) of studied PTEs were estimated to be higher than the target limit of 1.0E-06, for adults and children except for Cr with values of 5.91E-04, and 3.81E-04 for children and adults, respectively. Higher CR values of Cr compared to other PTEs in Arak surface soil demonstrate that living target populations, including children and adults, particularly children, are more at risk of carcinogenic risks of PTEs. 206Pb/207Pb ratios of the collected samples indicated that Pb in Arak surface sample was derived from industrial inputs and deposition, as well as re-suspension vehicle exhaust emission from previously leaded gasoline. The findings concerning the applied end-member contribution of geogenic and industrial and vehicle emission represented that the contribution could vary from 68.0% to 15% (mean: 39.3) for industrial emission, 65% to 19% for vehicle exhaust (mean: 39), and 46% to 10% (mean: 21.6) for geogenic sources.
Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Monitoramento Ambiental , Humanos , Irã (Geográfico) , Isótopos , Chumbo , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidadeRESUMO
Heavy metals from urban runoff preserved in sedimentary deposits record long-term economic and industrial development via the expansion and contraction of a city's infrastructure. Lead concentrations and isotopic compositions measured in the sediments of the harbor of Ostia-Rome's first harbor-show that lead pipes used in the water supply networks of Rome and Ostia were the only source of radiogenic Pb, which, in geologically young central Italy, is the hallmark of urban pollution. High-resolution geochemical, isotopic, and 14C analyses of a sedimentary core from Ostia harbor have allowed us to date the commissioning of Rome's lead pipe water distribution system to around the second century BC, considerably later than Rome's first aqueduct built in the late fourth century BC. Even more significantly, the isotopic record of Pb pollution proves to be an unparalleled proxy for tracking the urban development of ancient Rome over more than a millennium, providing a semiquantitative record of the water system's initial expansion, its later neglect, probably during the civil wars of the first century BC, and its peaking in extent during the relative stability of the early high Imperial period. This core record fills the gap in the system's history before the appearance of more detailed literary and inscriptional evidence from the late first century BC onward. It also preserves evidence of the changes in the dynamics of the Tiber River that accompanied the construction of Rome's artificial port, Portus, during the first and second centuries AD.
Assuntos
Arqueologia/métodos , Chumbo/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , História Antiga , Humanos , Itália , Intoxicação por Chumbo/história , Metais Pesados/análise , Cidade de Roma , Água/análise , Poluição da Água/análiseRESUMO
The accumulations of heavy metals in urban soils are derived from natural parent materials and complex anthropogenic emission sources. This paper investigated metal contamination in urban soils at an industry undeveloped city (Haikou) in southern China, an ideal place to quantitatively assess the contribution of metals from different sources. The concentrations of most heavy metals in the urban soils of Haikou were much lower than their guideline values and that of those from other big cities in China. In contrast, the chemical speciation of metals in this study was similar to those from other cities. The spatial distributions of heavy metals and principal component analysis (PCA) revealed that basaltic parent materials, traffic emissions, and coal combustion were the main factors controlling the distribution of metals in the soils. The Pb isotope signatures of the Haikou soils were greatly different from those of the Beijing and Shanghai soils, but similar to those of the Guangzhou soils, suggesting the common sources of Pb in southern China cities. The results of ternary mixing model of Pb isotopes showed that the contributions of Pb from natural background, coal combustion and traffic emission sources were 5.3-82.4% (mean: 39.7 ± 21.1%), 0-85.7% (mean: 25.5 ± 24.6%), and 1.9-64% (mean: 34.8 ± 22.9%), respectively. This suggests that traffic emission is still the most important anthropogenic source of Pb in Haikou.
Assuntos
Monitoramento Ambiental/métodos , Indústrias , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Urbanização , China , Cidades , Carvão Mineral/análise , Isótopos , Análise de Componente PrincipalRESUMO
The influence of a sophisticated water distribution system on urban development in Roman times is tested against the impact of Vesuvius volcanic activity, in particular the great eruption of AD 79, on all of the ancient cities of the Bay of Naples (Neapolis). Written accounts on urbanization outside of Rome are scarce and the archaeological record sketchy, especially during the tumultuous fifth and sixth centuries AD when Neapolis became the dominant city in the region. Here we show that isotopic ratios of lead measured on a well-dated sedimentary sequence from Neapolis' harbor covering the first six centuries CE have recorded how the AD 79 eruption was followed by a complete overhaul of Neapolis' water supply network. The Pb isotopic signatures of the sediments further reveal that the previously steady growth of Neapolis' water distribution system ceased during the collapse of the fifth century AD, although vital repairs to this critical infrastructure were still carried out in the aftermath of invasions and volcanic eruptions.
RESUMO
Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
RESUMO
Changes in the principal sources of Pb in overbank sediment profiles have been documented for two Spanish areas by using Pb isotopes and Pb concentrations. These locations (Madrid and Tinto-Odiel basin) represent two of the most contaminated regions in Spain. The Community of Madrid is characterized by heavy industrial and urban activity, focused mainly in Madrid City. The Tinto-Odiel basin drains the Iberian Pyrite Belt, which hosts many polymetallic massive sulphides and is heavily affected by mining activities in their headwaters. It has been proven that the influence of anthropogenic activity is reflected in these overbank deposits by variations in Pb concentrations that, in general, correlate with shifts in the (206)Pb/(207)Pb ratio. Rivas profile (downstream of Madrid) was found to be the most anthropogenically influenced site. The sediments within this profile which were recently deposited (170 ± 40 years BP) have the least radiogenic signatures. (206)Pb/(207)Pb ratios ranged between 1.1763 and 1.1876 indicating significant contributions of anthropogenic Pb. In contrast, profiles upstream of Madrid possess an average (206)Pb/(207)Pb ratio of 1.2272. It is difficult to clearly identify the most prominent source as the sediments appear to be characterized by an input from several sources. The floodplain profiles in the Tinto-Odiel basin exhibit uniform (206)Pb/(207)Pb ratios ranging from 1.1627 (Odiel river) to 1.1665 (Tinto river). These ratios are similar to the ones possessed by sulphide ores in the area and differ from the ratios of other nonmineralized formations in the basin, indicating that mining activities are the primary, if not sole, source of Pb to the sediments.
Assuntos
Sedimentos Geológicos/análise , Isótopos/análise , Chumbo/análise , Inundações , Geologia , EspanhaRESUMO
The results of a large geochemical study on various environmental media (soil, stream sediment, groundwater, surface water, lettuce and human hair) of the Sarno River basin, which is one of the most polluted areas in Italy, are presented. Further, it aims to deepen our understanding of the distribution of Pb and its isotope composition for the differentiation between natural and anthropogenic metal sources. Our results show the environmental media to be significantly enriched in Cr, Cu, Pb, Hg, Zn, and to a lesser extent in Sb, Cd and Ni compared to the natural local background variation. The numerous industrial activities (mainly tanneries) have caused environmental pollution especially Cr and Hg in soils and sediment samples. Such contamination is also evident in lettuce and in the hair of the resident population, which shows particularly high values for both Cr and Hg. The unusually high As, Be and Sn concentrations arise mostly from natural sources due to the volcanic nature of the investigated area. Lead isotope measurements indicate a trend suggesting mixing between two end-members, one of clear natural origin (geogenic) and another related to human activities (anthropogenic). Lead isotope results demonstrate that Pb in hair of inhabitants is similar to those in the local topsoil and that gasoline is one of the main, but not the only source of metal pollution. The most important exposure risks within the study area are associated with toxic elements levels in topsoil and stream sediment, and the ingestion of locally grown lettuce. The high concentrations of these elements in hair are a further confirmation of this exposure pathway.
Assuntos
Poluentes Ambientais/análise , Isótopos/química , Chumbo/química , Metais Pesados/análise , Água Subterrânea/química , Cabelo/química , Humanos , Isótopos/farmacocinética , Itália , Lactuca/química , Metais Pesados/farmacocinéticaRESUMO
To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.
Assuntos
Aesculus/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Modelos Teóricos , Tilia/química , Cidades , Monitoramento Ambiental/estatística & dados numéricos , Folhas de Planta/química , Sérvia , Oligoelementos/análiseRESUMO
Despite the rapid industrial growth and urban expansion along the coastline of the Western Indian Ocean, knowledge of both historical and current levels of anthropogenic lead (Pb) contamination, as well as its impact on the biosphere, remains limited compared to other industrialized regions. We present a twenty-four year long coralline record (1989-2013) of Pb/Ca ratio and Pb isotopes from the Lakshadweep coral reef in the Western Indian Ocean. This new record provides critical insight into source(s), possible transport pathways, and temporal trends in Pb deposition during the studied interval. The long-term trend in the surface seawater Pb concentration ([Pb]SW), reconstructed from the coralline Pb/Ca record, reveals almost doubling in [Pb]SW from ~50 pmol/kg in the year 1990 to ~107 pmol/kg in the year 2013. Bayesian mixing model calculations reveal that among the potential Pb polluting sources to this region, anthropogenic aerosol from the hinterland of the continents was the dominant contributor of Pb (23-89 %). A compilation of available Pb records from the Indian Ocean reveals that Pb isotope distribution patterns in the western and central equatorial Indian Oceans are distinctly different from those observed in the eastern Indian Ocean. The western Indian Ocean records exhibit lower Pb isotope ratios (206Pb/207Pb and 208Pb/207Pb) compared to the East Indian Ocean, suggesting a greater influence of anthropogenic Pb on seawater concentration. These findings highlight the spatio-temporally spread of anthropogenic Pb pollution and its potential impact on the biosphere in the Indian Ocean and therefore emphasize the urgent need for region-specific environmental management strategies. PLAIN LANGUAGE SUMMARY: This study reconstructs the history of lead (Pb) pollution in the Western Indian Ocean. We analyzed a specimen of coral, collected from Lakshadweep, to create a 24-year-long (years 1989 to 2013) for Pb concentration and isotopic composition of seawater in the Western Indian Ocean. Using the coralline Pb/Ca ratio and Pb isotope data, we have reconstructed surface ocean Pb concentration ([PbSW]) and isotopic composition to understand the sources, transport pathways, and temporal depositional trends over the western Indian Ocean during the past two decades. This reconstruction of [PbSW] reveals a doubling from ~50 pmol/kg in the year 1990 to ~107 pmol/kg in the year 2013. Our investigations to fingerprint the Pb source(s) to our study area reveal that majority of the anthropogenic Pb has been contributed by aerosol deposition sourced from the hinterland of the surrounding continents. Our investigation also revealed that the western Indian Ocean is more contaminated by anthropogenic Pb compared to the eastern Indian Ocean. These findings highlight the need for region-specific monitoring efforts in the Indian Ocean as well as the formulation of environmental strategies to mitigate the impact of Pb pollution.
RESUMO
Marinas are central hubs of global maritime leisure and transport, yet their operations can deteriorate the environmental quality of sediments. In response, this study investigated the metal contamination history associated with antifouling paint uses in a sediment core collected from Bracuhy marina (Southeast Brazil). Analysis target major and trace elements (Cu, Zn, Pb, Cd and Sn), rare earth elements (REEs), and Pb isotopes. The modification in Pb isotopic ratios and REEs pattern unequivocally revealed sediment provenance disruption following the marina construction. Metal distribution in the sediment core demonstrates that concentrations of Cu and Zn increased by up to 15 and 5 times, respectively, compared to the local background. This severe Cu and Zn contamination coincides with the onset of marina operations and can be attributed to the use of antifouling paints.
Assuntos
Cobre , Monitoramento Ambiental , Sedimentos Geológicos , Pintura , Poluentes Químicos da Água , Sedimentos Geológicos/química , Pintura/análise , Poluentes Químicos da Água/análise , Cobre/análise , Brasil , NaviosRESUMO
Facility agriculture enhances food production capabilities. However, concerns persist regarding heavy metal accumulation resulting from extensive operation of this type of farming. This study integrated the total content, five fractions, and isotope composition of Cd and Pb in intensively farmed soils in regions characterized by industrialization (Shaoguan, SG) and urbanization (Guangzhou, GZ), to assess the sources and mechanisms causing metals accumulation. We found significantly more severe Cd/Pb accumulation and potential mobility in SG than GZ. Cd displayed higher accumulation levels and potential mobility than Pb. The distinct isotopic signals in SG (-0.54 to 0.47 for δ114/110Cd and 1.1755 to 1.1867 for 206Pb/207Pb) and GZ (-0.86 to 0.12 for δ114/110Cd and 1.1914 to 1.2012 for 206Pb/207Pb) indicated significant differences in Cd/Pb sources. The Bayesian model revealed that industrial activities and related transportation accounted for over 40% and approximately 30%, respectively, of the average contributions of Cd/Pb in SG. While urban-related (26.6%) and agricultural-related (26.3%) activities primarily contributed to Cd in GZ. The integration of δ114/110Cd and 208Pb/206Pb has further enhanced the regional contrast in sources. The present study established a comprehensive tracing system for Cd-Pb, providing crucial insights into the accumulation and distribution of these metals in facility agricultural soils.
RESUMO
Lake Naivasha, Kenya's second-largest freshwater body is a wetland of international ecological importance and currently subjected to unprecedented anthropogenic influence. The study aims to chronologically reconstruct the main human activities and background weathering reactions that govern metal mobilizations into the lake and their potentially adverse effects on its ecological status. We combine extensive geochemical analyses (major, trace elements, Zn-Pb isotope ratios) in a dated lake sediment record and catchment rocks with remote sensing techniques. Downcore geochemical variations reflect natural ecosystem destabilizations occurring as early as the first half of the 20th century. These coincide with changes towards less radiogenic Pb-isotope values which persist towards the top of the core (206Pb/207Pb = 1.243 at core base â¼1843, to 206Pb/207Pb = 1.225 at â¼1978). We interpret the land-clearance for agricultural purposes on the Aberdare Range and documented early aviation activities as possible vectors of this early Pb-isotope excursion. The overlapping Pb-isotope signatures between sediment sources and anthropogenic contributions challenges a straightforward deconvolution of the two. Our conservative model calculations suggest, nevertheless, that an addition of up to â¼1.8 % Pb-gasoline influx to the total Pb flux, peaking in the 1980s is able to explain the Pb distribution trend. Homogeneous Zn-isotope compositions in sediments deposited until â¼1970s (δ66/64Zn = 0.216-0.225 ) do not follow major hydro-climatic events or anthropogenic forcing but likely reflect lake-specific natural cycling. Subsequent higher variations to both heavier (up to δ66/64Zn = 0.242 ± 0.005 ) and lighter (down to δ66/64Zn = 0.184 ± 0.003 ) Zn-isotope values are contemporaneous with intensification of large-scale horticultural industry in the catchment. Together with supporting indicators, the lighter Zn-isotope compositions in youngest analysed sediments (21st century) are attributable to increased biological productivity (algal blooms) and ongoing lake eutrophication. Our study demonstrates the applicability of the heavy metal isotope tool to reconstruct human influences on lake environments with complex geological settings such as the East African Rift System.
Assuntos
Monitoramento Ambiental , Lagos , Oligoelementos , Poluentes Químicos da Água , Lagos/química , Quênia , Poluentes Químicos da Água/análise , Oligoelementos/análise , Sedimentos Geológicos/química , Metais/análise , Isótopos/análiseRESUMO
The accumulation, pathways, and sources of anthropogenic lead (Pb) in Ulleung Basin sediments were investigated based on the temporal and spatial variations in the Pb concentration and stable Pb isotopes for 21 dated box core sediments collected from the shelf, slope, and basin in the southern East/Japan Sea. Leached (1 M HCl) Pb concentrations and isotope ratios (207Pb/206Pb and 208Pb/206Pb) were nearly constant before 1930, but have increased rapidly until the present. The primary source of anthropogenic Pb is considered to be atmospheric deposition, showing the signature of a mixture of leaded gasoline and coals, which was the major anthropogenic source in the basin. However, after the 1990s, anthropogenic Pb from dumping materials added as much as 10-25% to the slope sediment and has been spreading out from the water column accompanied by the movement of the East Sea Intermediate Water. In shelf areas, inputs from nonferrous refineries in the coastal industrial complexes play an important role in pollution from anthropogenic Pb.
Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Chumbo , Sedimentos Geológicos , Japão , Monitoramento Ambiental , Isótopos/análise , ÁguaRESUMO
Extensive mining and smelting contributed to the declining quality of Luanshya soils. The local smelter was the epicenter of contamination as shown by a spatial distribution analysis. Closeby soil profiles smelter exhibit extremely high Cu concentrations (up to 46,000 mg kg-1 Cu) relative to deeper layers where only background levels of trace elements were observed. A remote profile did not exhibit significant contamination. Lead isotopic ratios revealed that Pb contamination in the Luanshya soils was not smelter-derived. It was shown in this way that the historical usage of leaded gasoline was the main source of this metal. Although the Luanshya smelter also produced Co, this metal was not an important contaminant. Copper leaching was a concern in Luanshya. Upwards of 52 % of Cu was extractable in the exchangeable step of a sequential extraction procedure (SEP), but only for samples where Cu concentrations were high, suggesting that Cu was released exclusively from anthropogenic particles. This was supported by the SEP results for similar depths at the remote soil, where only a small fraction of Cu was labile (5.6 %). Lead and Co were strongly bound in the soils throughout. The excess of Cu in the topsoils was mostly bound in smelter-derived particles. These appeared as spherical fast-cooled droplets composed mostly of sulfides, oxides, and glass. X-ray diffraction and electron probe microanalysis of those particles allowed for a phase classification. Compositions were regularly not stoichiometric so most particles were classified as intermediate solid solutions. However, molecular proportions often closely resembled those of bornite, chalcanthite, cuprospinel, covellite, delafossite, diginite, or hydrous ferric oxides. Concentrations of Cu were often 100 % near the center of the particles indicating an inefficient smelting process. Weathering to some degree was common, which in conjunction with the susceptibility of Cu leaching was highly alarming.