Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(50)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36027727

RESUMO

Herein, we report the use of nanostructured crystalline silicon as a thermoelectric material and its integration into thermoelectric devices. The proof-of-concept relies on the partial suppression of lattice thermal conduction by introducing pores with dimensions scaling between the electron mean free path and the phonon mean free path. In other words, we artificially aimed at the well-known 'electron crystal and phonon glass' trade-off targeted in thermoelectricity. The devices were fabricated using CMOS-compatible processes and exhibited power generation up to 5.5 mW cm-2under a temperature difference of 280 K. These numbers demonstrate the capability to power autonomous devices with environmental heat sources using silicon chips of centimeter square dimensions. We also report the possibility of using the developed devices for integrated thermoelectric cooling.

2.
Microsc Microanal ; 22(5): 981-986, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27702410

RESUMO

A prototype Peltier thermoelectric cooling unit has been constructed to cool a cold finger on an electron microprobe. The Peltier unit was tested at 15 and 96 W, achieving cold finger temperatures of -10 and -27°C, respectively. The Peltier unit did not adversely affect the analytical stability of the instrument. Heat conduction between the Peltier unit mounted outside the vacuum and the cold finger was found to be very efficient. Under Peltier cooling, the vacuum improvement associated with water vapor deposition was not achieved; this has the advantage of avoiding severe degradation of the vacuum observed when warming up a cold finger from liquid nitrogen (LN2) temperatures. Carbon contamination rates were reduced as cooling commenced; by -27°C contamination rates were found to be comparable with LN2-cooled devices. Peltier cooling, therefore, provides a viable alternative to LN2-cooled cold fingers, with few of their associated disadvantages.

3.
MethodsX ; 13: 102873, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39161784

RESUMO

This article presents a direct method for temperature control in solid-state lasers, where temperature stability is crucial for optimizing the performance and reliability of such lasers. The proposed method utilizes Peltier chips for both cooling and heating the laser crystal to achieve precise temperature regulation. The system design is based on the step response of the open-loop thermal system and employs a proportional-integral (PI) controller for closed-loop temperature control. Comprehensive testing on a femtosecond Titanium-Sapphire Laser (Ti:Sapphire laser) demonstrated that the system is capable of maintaining the desired operating temperature with remarkable stability and efficiency, highlighting its practicality for real-world applications. Method Outline:•Utilization of Peltier chips for precise temperature control.•Estimation of first-order transfer function based on step response.•Implementation of a proportional-integral (PI) controller for closed-loop temperature regulation.

4.
Micron ; 172: 103499, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343389

RESUMO

We used a novel Peltier anticontamination device (PAC) to reduce carbon contamination upon electron beam irradiation in scanning electron microscopy through a reduction of hydrocarbon molecules in the specimen chamber. Unlike liquid-nitrogen based cold traps, the PAC operates free of user maintenance and is suitable for lengthy imaging sessions without degradation of the anticontamination performance. Its performance as an alternative cold trap method provides considerable reduction of electron beam-assisted carbon build-up. We compared the thickness of carbon contamination deposited upon prolonged electron beam scans with the PAC system on and off. Topographical structures of the carbon build-up were characterized using atomic force microscopy. We report that under identical beam parameters, thickness of the carbon contamination was reduced by over 79 % for area scans (1.2 × 1.2 µm2), and by two orders of magnitude for stationary point scans when the PAC cooling mode is engaged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA