Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Ecol Lett ; 27(4): e14405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623056

RESUMO

Local adaptation is commonly cited to explain species distribution, but how fitness varies along continuous geographical gradients is not well understood. Here, we combine thermal biology and life-history theory to demonstrate that Drosophila populations along a 2500 km latitudinal cline are adapted to local conditions. We measured how heat tolerance and viability rate across eight populations varied with temperature in the laboratory and then simulated their expected cumulative Darwinian fitness employing high-resolution temperature data from their eight collection sites. Simulations indicate a trade-off between annual survival and cumulative viability, as both mortality and the recruitment of new flies are predicted to increase in warmer regions. Importantly, populations are locally adapted and exhibit the optimal combination of both traits to maximize fitness where they live. In conclusion, our method is able to reconstruct fitness surfaces employing empirical life-history estimates and reconstructs peaks representing locally adapted populations, allowing us to study geographic adaptation in silico.


Assuntos
Adaptação Fisiológica , Drosophila , Animais , Aclimatação , Temperatura , Aptidão Genética
2.
Ecol Lett ; 27(2): e14381, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332503

RESUMO

Rate-temperature scaling relationships have fascinated biologists for nearly two centuries and are increasingly important in our era of global climate change. These relationships are hypothesized to originate from the temperature-dependent kinetics of rate-limiting biochemical reactions of metabolism. Several prominent theories have formalized this hypothesis using the Arrhenius model, which characterizes a monotonic temperature dependence using an activation energy E. However, the ubiquitous unimodal nature of biological temperature responses presents important theoretical, methodological, and conceptual challenges that restrict the promise for insight, prediction, and progress. Here we review the development of key hypotheses and methods for the temperature-scaling of biological rates. Using simulations, we examine the constraints of monotonic models, illustrating their sensitivity to data nuances such as temperature range and noise, and their tendency to yield variable and underestimated E, with critical consequences for climate change predictions. We also evaluate the behaviour of two prominent unimodal models when applied to incomplete and noisy datasets. We conclude with recommendations for resolving these challenges in future research, and advocate for a shift to unimodal models that better characterize the full range of biological temperature responses.


Assuntos
Temperatura Alta , Modelos Biológicos , Temperatura
3.
Proc Biol Sci ; 291(2015): 20232253, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228502

RESUMO

Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7-26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO2 can mitigate negative effects of warming. To identify whether elevated CO2 could improve thermal performance of a cool-edge population of E. radiata, we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.


Assuntos
Kelp , Phaeophyceae , Água do Mar , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Dióxido de Carbono , Mudança Climática , Temperatura , Oceanos e Mares , Aquecimento Global
4.
Microb Ecol ; 87(1): 89, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955821

RESUMO

We investigated the food-dependent growth and thermal response of the freshwater ciliate Colpidium kleini using numerical response (NR) experiments. This bacterivorous ciliate occurs in lotic water and the pelagial of lakes and ponds. The C. kleini strain used in this work was isolated from a small alpine lake and identified by combining detailed morphological inspections with molecular phylogeny. Specific growth rates (rmax) were measured from 5 to 21 °C. The ciliate did not survive at 22 °C. The threshold bacterial food levels (0.3 - 2.2 × 106 bacterial cells mL-1) matched the bacterial abundance in the alpine lake from which C. kleini was isolated. The food threshold was notably lower than previously reported for C. kleini and two other Colpidium species. The threshold was similar to levels reported for oligotrich and choreotrich ciliates if expressed in terms of bacterial biomass (0.05 - 0.43 mg C L-1). From the NR results, we calculated physiological mortality rates at zero food concentration. The mean mortality (0.55 ± 0.17 d-1) of C. kleini was close to the mean estimate obtained for other planktonic ciliates that do not encyst. We used the data obtained by the NR experiments to fit a thermal performance curve (TPC). The TPC yielded a temperature optimum at 17.3 °C for C. kleini, a maximum upper thermal tolerance limit of 21.9 °C, and a thermal safety margin of 4.6 °C. We demonstrated that combining NR with TPC analysis is a powerful tool to predict better a species' fitness in response to temperature and food.


Assuntos
Cilióforos , Cilióforos/fisiologia , Cilióforos/crescimento & desenvolvimento , Cilióforos/classificação , Cilióforos/isolamento & purificação , Lagos/microbiologia , Lagos/parasitologia , Temperatura , Filogenia , Extinção Biológica , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética
5.
J Phycol ; 60(2): 503-516, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426571

RESUMO

Kelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range-restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4-22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22-23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 µmol · d-1) and high (90 µmol · d-1) nitrate conditions at and above the thermal optimum (16-23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20-21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.


Assuntos
Kelp , Nitratos , Mudança Climática , Temperatura , Oceanos e Mares , Ecossistema
6.
J Invertebr Pathol ; 204: 108106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621520

RESUMO

The thermal environment is a critical determinant of outcomes in host-pathogen interactions, yet the complexities of this relationship remain underexplored in many ecological systems. We examined the Thermal Mismatch Hypothesis (TMH) by measuring phenotypic variation in individual thermal performance profiles using a model system of two species of entomopathogenic fungi (EPF) that differ in their ecological niche, Metarhizium brunneum and M. flavoviride, and a warm-adapted model host, the mealworm Tenebrio molitor. We conducted experiments across ecologically relevant temperatures to determine the thermal performance curves for growth and virulence, measured as % survival, identify critical thresholds for these measures, and elucidate interactive host-pathogen effects. Both EPF species and the host exhibited a shared growth optima at 28 °C, while the host's growth response was moderated in sublethal pathogen infections that depended on fungus identity and temperature. However, variances in virulence patterns were different between pathogens. The fungus M. brunneum exhibited a broader optimal temperature range (23-28 °C) for virulence than M. flavoviride, which displayed a multiphasic virulence-temperature relationship with distinct peaks at 18 and 28 °C. Contrary to predictions of the TMH, both EPF displayed peak virulence at the host's optimal temperature (28 °C). The thermal profile for M. brunneum aligned more closely with that of T. molitor than that for M. flavoviride. Moreover, the individual thermal profile of M. flavoviride closely paralleled its virulence thermal profile, whereas the virulence thermal profile of M. brunneum did not track with its individual thermal performance. This suggests an indirect, midrange (23 °C) effect, where M. brunneum virulence exceeded growth. These findings suggest that the evolutionary histories and ecological adaptations of these EPF species have produced distinct thermal niches during the host interaction. This study contributes to our understanding of thermal ecology in host-pathogen interactions, underpinning the ecological and evolutionary factors that shape infection outcomes in entomopathogenic fungi. The study has ecological implications for insect population dynamics in the face of a changing climate, as well as practically for the use of these organisms in biological control.


Assuntos
Interações Hospedeiro-Patógeno , Metarhizium , Tenebrio , Animais , Metarhizium/patogenicidade , Metarhizium/fisiologia , Tenebrio/microbiologia , Virulência , Temperatura , Controle Biológico de Vetores
7.
Am Nat ; 202(6): 753-766, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033177

RESUMO

AbstractThermal performance curves (TPCs) are increasingly used as a convenient approach to predict climate change impacts on ectotherms that accounts for organismal thermal sensitivity; however, directly applying TPCs to temperature data to estimate fitness has yielded contrasting predictions depending on assumptions regarding climate variability. We compare direct application of TPCs to an approach integrating TPCs for different fitness components (e.g., per capita birth rate, adult life span) across ectotherm life cycles into a population dynamic model, which we independently validated with census data and applied to hemipteran insect populations across latitude. The population model predicted that climate change will reduce insect fitness more at higher latitudes due to its effects on survival but will reduce net reproductive rate more at lower latitudes due to its effects on fecundity. Directly applying TPCs underestimated climate change impacts on fitness relative to incorporating the TPCs into the population model due to simplifying survival dynamics across the life cycle. The population model predicted that climate change will reduce mean insect density and increase population variability at higher latitudes via reduced survival, despite faster development and a longer activity period. Our study highlights the importance of considering how multiple fitness components respond to climate variability across the life cycle to better understand and anticipate the ecological consequence of climate change.


Assuntos
Mudança Climática , Insetos , Animais , Temperatura , Insetos/fisiologia , Estágios do Ciclo de Vida , Fertilidade
8.
Proc Biol Sci ; 290(1998): 20230507, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161321

RESUMO

Understanding how species adapt to different temperatures is crucial to predict their response to global warming, and thermal performance curves (TPCs) have been employed recurrently to study this topic. Nevertheless, fundamental questions regarding how thermodynamic constraints and evolution interact to shape TPCs in lineages inhabiting different environments remain unanswered. Here, we study Drosophila simulans along a latitudinal gradient spanning 3000 km to test opposing hypotheses based on thermodynamic constrains (hotter-is-better) versus biochemical adaptation (jack-of-all-temperatures) as primary determinants of TPCs variation across populations. We compare thermal responses in metabolic rate and the egg-to-adult survival as descriptors of organismal performance and fitness, respectively, and show that different descriptors of TPCs vary in tandem with mean environmental temperatures, providing strong support to hotter-is-better. Thermodynamic constraints also resulted in a strong negative association between maximum performance and thermal breadth. Lastly, we show that descriptors of TPCs for metabolism and egg-to-adult survival are highly correlated, providing evidence of co-adaptation, and that curves for egg-to-adult survival are systematically narrower and displaced toward lower temperatures. Taken together, our results support the pervasive role of thermodynamics constraining thermal responses in Drosophila populations along a latitudinal gradient, that are only partly compensated by evolutionary adaptation.


Assuntos
Aclimatação , Drosophila , Animais , Temperatura , Termodinâmica , Drosophila simulans
9.
Proc Biol Sci ; 290(1990): 20222289, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629114

RESUMO

Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea Daphnia magna. The heat-selected Daphnia showed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather than per capita) top-down impact of D. magna may increase under rapid thermal evolution.


Assuntos
Daphnia , Temperatura Alta , Animais , Daphnia/fisiologia , Fertilidade , Fenótipo , Crescimento Demográfico , Temperatura
10.
Glob Chang Biol ; 29(5): 1223-1238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461630

RESUMO

Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization-that is, community and food web. Building on the framework of consumer-resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today.


Assuntos
Ecologia , Ecossistema , Cadeia Alimentar , Biodiversidade , Mudança Climática
11.
Glob Chang Biol ; 28(9): 3040-3053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35108424

RESUMO

For marine ectotherms, larval success, planktonic larval duration and dispersal trajectories are strongly influenced by temperature, and therefore, ocean warming and heatwaves have profound impacts on these sensitive stages. Warming, through increased poleward flow in regions with western boundary currents, such as the East Australia Current (EAC), provides opportunities for range extension as propagules track preferred conditions. Two sea urchin species, Centrostephanus rodgersii and Heliocidaris tuberculata, sympatric in the EAC warming hotspot, exhibit contrasting responses to warming. Over half a century, C. rodgersii has undergone marked poleward range extension, but the range of H. tuberculata has not changed. We constructed thermal performance curves (TPC) to determine if contrasting developmental thermal tolerance can explain this difference. The temperatures tested encompassed present-day distribution and forecast ocean warming/heatwave conditions. The broad and narrow thermal optimum (Topt) ranges for C. rodgersii and H. tuberculata larvae (7.2 and 4.7°C range, respectively) matched their realized (adult distribution) thermal niches. The cool and warm temperatures for 50% development to the feeding larva approximated temperatures at adult poleward range limits. Larval cool tolerances with respect to mean local temperature differed, 6.0 and 3.8°C respectively. Larval warm tolerances were similar for both species as are the adult warm range edges. The larvae of both species would be sensitive to heatwaves. Centrostephanus rodgersii has stayed in place and shifted in space, likely due to its broad cold-warm larval thermal tolerance and large thermal safety margins. Phenotypic plasticity of the planktonic stage of C. rodgersii facilitated its range extension. In contrast, larval cold intolerance of H. tuberculata explains its restricted range and will delay poleward extension as the region warms. In a warming ocean, we show that intrinsic thermal biology traits of the pelagic stage provide an integrative tool to explain species-specific variation in range shift patterns.


Assuntos
Ecossistema , Ouriços-do-Mar , Adaptação Fisiológica , Animais , Larva/fisiologia , Ouriços-do-Mar/fisiologia , Temperatura
12.
J Therm Biol ; 103: 103148, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35027199

RESUMO

In Puerto Rico, an island threatened by climate warming, only one of two species of frogs that share part of their distribution has undergone a recent range contraction to higher elevations. We questioned if differences in their physiological response to temperature and dehydration might explain this distributional change. We studied a lowland and a highland population of Eleutherodactylus coqui, a widespread generalist, and E. portoricensis, an endangered species that is currently found only above 600 m. We compared various physiological aspects: operative temperature; temperature selection; critical temperatures; and their response to jumping performance tests at various thermal and hydric regimes. Results revealed that E. portoricensis had the highest CTmin and lowest CTmax and selected a cooler range of temperatures from the experimental gradient. Jumping performance increased with temperature for the three populations until attaining maximum performance. Afterwards, performance dropped drastically until reaching CTmax. Dehydration had a negative effect on performance for both species, particularly on maximum performance. This effect was greatest for E. portoricensis, followed by high-elevation E. coqui. The significantly greater thermo-hydric physiological limitations of E. portoricensis may explain its recent range contraction, potentially, as a response to climate warming. Low-elevation E. coqui had the lowest operative warming tolerance and was the only population to select temperatures like those encountered in their environment, indicating it may be narrowly adapted to local thermal conditions and thus, also vulnerable to climate change. Our results point towards plasticity in the response of E. coqui to varying climatic conditions, and present evidence of different physiological responses between closely related species at the same locality. This work highlights the importance of studying the combined effects of temperature and hydration to understand the response of ectotherms to warming environments and presents further evidence that desiccation may be a limiting factor determining which species may survive.


Assuntos
Anfíbios/fisiologia , Biodiversidade , Ecossistema , Temperatura , Animais , Mudança Climática , Fenótipo , Filogenia
13.
Proc Biol Sci ; 288(1947): 20202968, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33757343

RESUMO

Understanding and predicting responses of ectothermic animals to temperature are essential for decision-making and management. The thermal performance curve (TPC), which quantifies the thermal sensitivity of traits such as metabolism, growth and feeding rates in laboratory conditions, is often used to predict responses of wild populations. However, central assumptions of this approach are that TPCs are relatively static between populations and that curves measured under stable temperature conditions can predict performance under variable conditions. We test these assumptions using two latitudinally matched populations of the ecosystem engineer Mytilus trossulus that differ in their experienced temperature variability regime. We acclimated each population in a range of constant or fluctuating temperatures for six weeks and measured a series of both short term (feeding rate, byssal thread production) and long-term (growth, survival) metrics to test the hypothesis that performance in fluctuating temperatures can be predicted from constant temperatures. We find that this was not true for any metric, and that there were important interactions with the population of origin. Our results emphasize that responses to fluctuating conditions are still poorly understood and suggest caution must be taken in the use of TPCs generated under constant temperature conditions for the prediction of wild population responses.


Assuntos
Mytilus , Aclimatação , Animais , Ecossistema , Temperatura
14.
J Anim Ecol ; 90(7): 1666-1677, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724470

RESUMO

Many species that are moving polewards encounter novel thermal regimes to which they have to adapt. Therefore, rapid evolution of thermal tolerance and of thermal plasticity in fitness-related traits in edge populations can be crucial for the success and speed of range expansions. We tested for adaptation in cold tolerance and in life history, behavioural and physiological traits and their thermal plasticity during a poleward range expansion. We reconstructed the thermal performance curves of life history (survival, growth and development rates), behaviour (food intake) and cold tolerance (chill coma recovery time) in the aquatic larval stage of the damselfly Ischnura elegans that is currently showing a poleward range expansion in northern Europe. We studied larvae from three edge and three core populations using a common-garden experiment. Consistent with the colder annual temperatures, larvae at the expansion front evolved an improved cold tolerance. The edge populations showed no overall (across temperatures) evolution of a faster life history that would improve their range-shifting ability. Moreover, consistent with damselfly edge populations from colder latitudes, edge populations evolved at the highest rearing temperature (28°C) a faster development rate, likely to better exploit the rare periods with higher temperatures. This was associated with a higher food intake and a lower metabolic rate. In conclusion, our results suggest that the edge populations rapidly evolved adaptive changes in trait means and thermal plasticity to the novel thermal conditions at the edge front. Our results highlight the importance of considering besides trait plasticity and the evolution of trait means, also the evolution of trait plasticity to improve forecasts of responses to climate change.


Durante su expansión hacia los polos, las especies encuentran nuevos regímenes de temperatura a los que tienen que adaptarse. Por esto, una rápida evolución de la tolerancia térmica y de la plasticidad térmica de rasgos fisiológicos clave en las poblaciones del borde del área de distribución es crucial para el éxito y la velocidad de las expansiones de rango. En este estudio testamos la adaptación de la tolerancia la frío y la plasticidad térmica de rasgos de historia de vida, comportamiento y fisiológicos durante una expansión de rango hacia el norte. Reconstruimos las curvas de rendimiento térmico de rasgos de historia de vida (supervivencia, tasa de crecimiento y tasa de desarrollo) y comportamiento (ingestión de alimento), así como la tolerancia al frío (tiempo de recuperación del coma por frío) en la larva acuática de la especie de caballito del diablo Ischnura elegans, especie que muestra un rango de expansión actual en el norte de Europa. Estudiamos larvas de tres poblaciones de la región de expansión norte y tres poblaciones de la región central usando experimentos en laboratorio. En concordancia con las temperaturas más bajas, las larvas del área de expansión mostraron mayor tolerancia al frío. Sin embargo, estas larvas no mostraron en general (a lo largo de las temperaturas estudiadas) evolución hacia una historia de vida más rápida, que aumentaría su habilidad para expandirse. Además, en consistencia con la menor temperatura de la región de expansión, las larvas presentaron mayor tasa de desarrollo a la temperatura experimental más alta (28°C), probablemente para explotar mejor los infrecuentes períodos con altas temperaturas en dicha región. Esto estuvo asociado con una mayor ingestión de alimento y una menor tasa metabólica. En conclusión, nuestros resultados sugieren que los valores medios y la plasticidad de los rasgos estudiados de las poblaciones del frente de expansión evolucionaron rápidamente para adaptarse a las nuevas condiciones térmicas en dicha región. Asimismo, nuestros resultados destacan la importancia de considerar, además de la media y plasticidad de los rasgos, la evolución de esta plasticidad, con el fin de mejorar las predicciones de las respuestas de las especies al cambio climático.


Assuntos
Odonatos , Adaptação Fisiológica , Animais , Temperatura Baixa , Europa (Continente) , Temperatura
15.
Proc Natl Acad Sci U S A ; 115(4): 744-749, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311324

RESUMO

Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Temperatura Alta/efeitos adversos , Parasitos/fisiologia , Aclimatação/fisiologia , Animais , Mudança Climática , Ecologia , Epidemias , Interações Hospedeiro-Parasita/genética , Estágios do Ciclo de Vida/fisiologia , Modelos Biológicos , Temperatura
16.
Ecol Lett ; 23(4): 722-733, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32059265

RESUMO

The efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short-term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long-term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short-term increases in temperature. Long-term experimental evolution under high temperature reversed the short-term stimulation of metabolic rates, resulting in increased rates of carbon fixation. Our findings suggest that thermal adaptation may therefore have an ameliorating impact on the efficiency of phytoplankton as primary mediators of the biological carbon pump.


Assuntos
Aquecimento Global , Fitoplâncton , Carbono , Ciclo do Carbono , Fotossíntese , Temperatura
17.
Am Nat ; 195(4): 691-704, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32216663

RESUMO

Water limitation is a primary driver of plant geographic distributions and individual plant fitness. Drought resistance is the ability to survive and reproduce despite limited water, and numerous studies have explored its physiological basis in plants. However, it is unclear how drought resistance and trade-offs associated with drought resistance evolve within plant clades. We quantified the relationship between water availability and fitness for 13 short-lived plant taxa in the Streptanthus clade that vary in their phenology and the availability of water in the environments where they occur. We derived two parameters from these relationships: plant fitness when water is not limiting and the water inflection point (WIF), the watering level at which additional water is most efficiently turned into fitness. We used phylogenetic comparative methods to explore trade-offs related to drought resistance and trait plasticity and the degree to which water relationship parameters are conserved. Taxa from drier climates produced fruits at the lowest water levels, had a lower WIF, flowered earlier, had shorter life spans, had greater plastic water-use efficiency (WUE), and had lower fitness at nonlimiting water. In contrast, later-flowering Streptanthus taxa from less xeric climates experienced high fitness at nonlimiting water but had no fitness at the lowest water levels. Across the clade, we found a trade-off between drought resistance and fitness at high water, though a single ruderal species was an outlier in this relationship. Our results suggest that drought escape trades off with maximal fitness under nonlimiting water, and both are tied to phenology. We also found that variation in trait plasticity determines how different plant species produce fitness over a water gradient.


Assuntos
Adaptação Fisiológica , Brassicaceae/fisiologia , Água/metabolismo , Brassicaceae/classificação , California , Clima , Secas , Flores , Filogenia
18.
Proc Biol Sci ; 287(1938): 20202508, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33143579

RESUMO

Thermal performance curves have provided a common framework to study the impact of temperature in biological systems. However, few generalities have emerged to date. Here, we combine an experimental approach with theoretical analyses to demonstrate that performance curves are expected to vary predictably with the levels of biological organization. We measured rates of enzymatic reactions, organismal performance and population viability in Drosophila acclimated to different thermal conditions and show that performance curves become narrower with thermal optima shifting towards lower temperatures at higher levels or organization. We then explain these results on theoretical grounds, showing that this pattern reflects the cumulative impact of asymmetric thermal effects that piles up with complexity. These results and the proposed framework are important to understand how organisms, populations and ecological communities might respond to changing thermal conditions.


Assuntos
Aclimatação , Evolução Biológica , Temperatura , Animais , Ecossistema
19.
J Exp Biol ; 223(Pt 6)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098885

RESUMO

Phenotypic flexibility may facilitate range expansion by allowing organisms to maintain high levels of performance when introduced to novel environments. Phenotypic flexibility, such as reversible acclimatization, permits organisms to achieve high performance over a wide range of environmental conditions, without the costly allocation or acquisition tradeoffs associated with behavioral thermoregulation, which may expedite range expansion in introduced species. The northern curly-tailed lizard, Leiocephalus carinatus, was introduced to the USA in the 1940s and is now established in southern Florida. We measured bite force and the thermal sensitivity of sprinting of L. carinatus during the winter and spring to determine how morphology and performance varied seasonally. We found evidence of seasonal variation in several aspects of physiological performance. Lizards sampled in spring sprinted faster and tolerated higher temperatures, while lizards sampled in winter had high performance over a wider range of temperatures. Furthermore, seasonal differences in physiology were only detected after generating thermal reaction norms. Both sprint and bite force performance did not differ seasonally when solely comparing performance at a common temperature. No seasonal relationships between morphology and performance were detected. Our results suggest that L. carinatus may use reversible acclimatization to maintain high levels of performance across seasons not typically experienced within their native range. Thermal physiology plasticity may ameliorate the impacts of sub-optimal temperatures on performance without the cost of behavioral thermoregulation. Our work highlights the importance of utilizing reaction norms when evaluating performance and the potential ecological impacts of introduced species.


Assuntos
Aclimatação , Lagartos , Animais , Temperatura Corporal , Regulação da Temperatura Corporal , Florida , Temperatura
20.
Am Nat ; 193(4): 530-544, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30912965

RESUMO

Performance curves are valuable tools for quantifying the fundamental niches of organisms and testing hypotheses about evolution, life-history trade-offs, and the drivers of variation in species' distribution patterns. Here, we present a novel Bayesian method for characterizing performance curves that facilitates comparisons among species. We then use this model to quantify and compare the hydrological performance curves of 14 different taxa in the genus Lasthenia, an ecologically diverse clade of plants that collectively occupy a variety of habitats with unique hydrological features, including seasonally flooded wetlands called vernal pools. We conducted a growth chamber experiment to measure each taxon's fitness across five hydrological treatments that ranged from severe drought to extended flooding, and we identified differences in hydrological performance curves that explain their associations with vernal pool and terrestrial habitats. Our analysis revealed that the distribution of vernal pool taxa in the field does not reflect their optimal hydrological environments: all taxa, regardless of habitat affinity, have highest fitness under similar hydrological conditions of saturated soil without submergence. We also found that a taxon's relative position across flood gradients within vernal pools is best predicted by the height of its performance curve. These results demonstrate the utility of our approach for generating insights into when and how performance curves evolve among taxa as they diversify into distinct environments. To facilitate its use, the modeling framework has been developed into an R package.


Assuntos
Asteraceae/fisiologia , Ecossistema , Aptidão Genética , Modelos Biológicos , Água/fisiologia , Teorema de Bayes , Evolução Biológica , Secas , Inundações , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA