RESUMO
Clinical validation of human papillomavirus (HPV) assays according to international criteria is prerequisite for their implementation in cervical cancer screening. OncoPredict HPV Quantitative Typing (QT) assay (Hiantis Srl, Milan, Italy) is a novel full-genotyping multiplex real-time PCR quantitative assay targeting E6/E7 genes, allowing individual viral load determination of 12 high-risk (HR) HPV types. Quality controls for sample adequacy, efficiency of nucleic acid extraction and PCR inhibition are included in the assay. Clinical performance of OncoPredict HPV QT test was assessed as part of the "Validation of HPV Genotyping Tests" (VALGENT-2) framework, consisting of 1300 cervical liquid-based cytology (LBC) samples of women aged between 20 and 60 years who had originally attended for routine cervical screening in Scotland. The clinical accuracy of the OncoPredict HPV QT (index test) for the detection of CIN2+ was assessed relative to the GP5+/6+ Enzyme ImmunoAssay (GP5+/6+ EIA) (comparator test), using noninferiority criteria. Intra- and interlaboratory reproducibility of the assay was assessed on a subpopulation, comprising 526 samples. The relative sensitivity and specificity for OncoPredict HPV QT vs GP5+/6+-PCR-EIA were 1.01 (95% CI: 0.99-1.03) and 1.03 (95% CI: 1.0-1.06) respectively. The P-values for noninferiority were ≤0.001. The intra- and inter-laboratory reproducibility demonstrated a high concordance (>98.7%) with kappas for individual types ranging from 0.66 to 1.00. OncoPredict HPV QT fulfills the international validation criteria for the use of HPV tests in cervical cancer screening.
Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/diagnóstico , Genótipo , Detecção Precoce de Câncer , Técnicas de Genotipagem , Infecções por Papillomavirus/diagnóstico , Reprodutibilidade dos Testes , Papillomaviridae/genética , Sensibilidade e EspecificidadeRESUMO
Nanopore sequencing has shown the potential to democratize genomic pathogen surveillance due to its ease of use and low entry cost. However, recent genotyping studies showed discrepant results compared to gold-standard short-read sequencing. Furthermore, although essential for widespread application, the reproducibility of nanopore-only genotyping remains largely unresolved. In our multicenter performance study involving five laboratories, four public health-relevant bacterial species were sequenced with the latest R10.4.1 flow cells and V14 chemistry. Core genome MLST analysis of over 500 data sets revealed highly strain-specific typing errors in all species in each laboratory. Investigation of the methylation-related errors revealed consistent DNA motifs at error-prone sites across participants at read level. Depending on the frequency of incorrect target reads, this either leads to correct or incorrect typing, whereby only minimal frequency deviations can randomly determine the final result. PCR preamplification, recent basecalling model updates and an optimized polishing strategy notably diminished the non-reproducible typing. Our study highlights the potential for new errors to appear with each newly sequenced strain and lays the foundation for computational approaches to reduce such typing errors. In conclusion, our multicenter study shows the necessity for a new validation concept for nanopore sequencing-based, standardized bacterial typing, where single nucleotide accuracy is critical.
Assuntos
Bactérias , Técnicas de Genotipagem , Sequenciamento por Nanoporos , Sequenciamento por Nanoporos/métodos , Reprodutibilidade dos Testes , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Humanos , Técnicas de Genotipagem/métodos , Genótipo , Tipagem de Sequências Multilocus/métodos , DNA Bacteriano/genética , Genoma Bacteriano/genética , Análise de Sequência de DNA/métodosRESUMO
BACKGROUND: Accurately detecting a variety of lung abnormalities from heterogenous chest X-ray (CXR) images and writing radiology reports is often difficult and time-consuming. OBJECTIVE: To access the utility of a novel artificial intelligence (AI) system (MOM-ClaSeg) in enhancing the accuracy and efficiency of radiologists in detecting heterogenous lung abnormalities through a multi-reader and multi-case (MRMC) observer performance study. METHODS: Over 36,000 CXR images were retrospectively collected from 12 hospitals over 4 months and used as the experiment group and the control group. In the control group, a double reading method is used in which two radiologists interpret CXR to generate a final report, while in the experiment group, one radiologist generates the final reports based on AI-generated reports. RESULTS: Compared with double reading, the diagnostic accuracy and sensitivity of single reading with AI increases significantly by 1.49% and 10.95%, respectively (Pâ< â0.001), while the difference in specificity is small (0.22%) and without statistical significance (Pâ=â0.255). Additionally, the average image reading and diagnostic time in the experimental group is reduced by 54.70% (Pâ< â0.001). CONCLUSION: This MRMC study demonstrates that MOM-ClaSeg can potentially serve as the first reader to generate the initial diagnostic reports, with a radiologist only reviewing and making minor modifications (if needed) to arrive at the final decision. It also shows that single reading with AI can achieve a higher diagnostic accuracy and efficiency than double reading.
RESUMO
Since the establishment of procedures for the safety assessment of food products that use recombinant DNA technology, the manufacture, import, and sale of genetically modified (GM) foods that have not undergone safety assessment are prohibited under the Food Sanitation Act. Therefore, a performance study to confirm the GM food testing operations of each laboratory is very important to ensure the reliability of the GM food monitoring system. In 2022, GM papaya line PRSV-YK-which has not yet been authorized in Japan-was selected for testing, and a papaya paste and a DNA solution were used as the test samples. With these samples, a laboratory performance study of the DNA extraction and real-time PCR operations was conducted. This confirmed that the 18 participating laboratories were generally performing the DNA extraction and real-time PCR operations correctly. However, some laboratories using certain DNA amplification reagent with some real-time PCR instruments were not able to determine the PRSV-YK detection test. This suggests that the PRSV-YK detection test may not be able to correctly detect samples containing GM papaya when performed with these combinations of instruments and reagent. In order to ensure the reliability of the PRSV-YK detection test, it is necessary to examine in detail how the combination of DNA polymerase reagents and real-time PCR instruments affects the detection limit, and to implement an appropriate solution.
Assuntos
Carica , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas , Carica/genética , DNA de Plantas/genética , DNA de Plantas/análise , Análise de Alimentos/métodos , Inocuidade dos Alimentos , Japão , Plantas Geneticamente Modificadas/genética , Potyvirus/genética , Potyvirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos TestesRESUMO
The composite material PLGA compounded with ß-tricalcium phosphate (ß-TCP) was prepared by melt blending method, and the absorbable interface screw was prepared by injection molding process. Prepare PBS buffer that simulates human body, conduct in vitro degradation experiments on interface screws according to relevant national and industry standards, then test and characterize interface screws at different time points for degradation of intrinsic viscosity, average molecular weight distribution, mass loss, mechanical properties and thermal properties. According to the degradation performance-time curve, determine the time node at which the interface screw loses the mechanical properties. In this paper, the in vitro degradation behavior of interfacial screws prepared from PLGA and ß-TCP composites was studied in detail, providing a reference and basis for the degradation behavior of absorbable products prepared from PLGA and ß-TCP composites.
Assuntos
Fosfatos de Cálcio , Poliésteres , Humanos , Teste de Materiais , Implantes AbsorvíveisRESUMO
INTRODUCTION: The diagnostic accuracy of antigen testing of anterior nasal (AN) samples for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been evaluated in the Japanese population. This study assessed the diagnostic accuracy of the Roche SARS-CoV-2 rapid antigen test (rapid antigen test) using AN samples. METHODS: Two AN samples and one nasopharyngeal (NP) sample were collected from individuals undergoing screening for SARS-CoV-2 infection. The results of the rapid antigen test and the reverse-transcription polymerase chain reaction (RT-PCR) test using AN samples were compared to those of RT-PCR tests using NP samples. RESULTS: Samples were collected from 800 participants, 95 and 110 of whom tested positive for SARS-CoV-2 on RT-PCR tests of AN and NP samples, respectively. The overall sensitivity/specificity of the AN rapid antigen test and AN RT-PCR were 72.7%/100% and 86.4%/100%, respectively. In symptomatic cases, the sensitivities of the AN rapid antigen test and AN RT-PCR were 84.7% and 94.9%, respectively. In asymptomatic cases, the sensitivities of the AN rapid antigen test and AN RT-PCR were 58.8% and 76.5%, respectively. The sensitivity of the AN rapid antigen test was over 80% in cases with cycle threshold (Ct) values < 25; it significantly decreased with an increase in the Ct values (p < 0.001). CONCLUSION: The rapid antigen test with AN samples had a favorable sensitivity, especially in symptomatic cases or in cases with Ct values < 25. It gave no false-positive results. Compared with AN-RT PCR, the AN rapid antigen test had a modestly lower sensitivity in asymptomatic cases.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste Sorológico para COVID-19 , Humanos , Nasofaringe , Estudos Prospectivos , SARS-CoV-2/genética , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Branching events in phylogenetic trees reflect bifurcating and/or multifurcating speciation and splitting events. In the presence of gene flow, a phylogeny cannot be described by a tree but is instead a directed acyclic graph known as a phylogenetic network. Both phylogenetic trees and networks are typically reconstructed using computational analysis of multi-locus sequence data. The advent of high-throughput sequencing technologies has brought about two main scalability challenges: (1) dataset size in terms of the number of taxa and (2) the evolutionary divergence of the taxa in a study. The impact of both dimensions of scale on phylogenetic tree inference has been well characterized by recent studies; in contrast, the scalability limits of phylogenetic network inference methods are largely unknown. RESULTS: In this study, we quantify the performance of state-of-the-art phylogenetic network inference methods on large-scale datasets using empirical data sampled from natural mouse populations and a range of simulations using model phylogenies with a single reticulation. We find that, as in the case of phylogenetic tree inference, the performance of leading network inference methods is negatively impacted by both dimensions of dataset scale. In general, we found that topological accuracy degrades as the number of taxa increases; a similar effect was observed with increased sequence mutation rate. The most accurate methods were probabilistic inference methods which maximize either likelihood under coalescent-based models or pseudo-likelihood approximations to the model likelihood. The improved accuracy obtained with probabilistic inference methods comes at a computational cost in terms of runtime and main memory usage, which become prohibitive as dataset size grows past twenty-five taxa. None of the probabilistic methods completed analyses of datasets with 30 taxa or more after many weeks of CPU runtime. CONCLUSIONS: We conclude that the state of the art of phylogenetic network inference lags well behind the scope of current phylogenomic studies. New algorithmic development is critically needed to address this methodological gap.
Assuntos
Evolução Biológica , Biologia Computacional/métodos , Especiação Genética , Modelos Genéticos , Filogenia , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , ProbabilidadeRESUMO
In the present study, a facile nano-sized gamma alumina was synthesized and then examined for immobilization of cobalt and cesium ions individually from aqueous solutions. The comprehensive analysis of functional groups, phase composition, surface morphology and sorption characteristics of the synthesized nano-sized Ï alumina was executed. It was deduced that acquired material was low-crystalline with a high elimination efficacy towards the concerned cations under slightly alkali and acidic conditions. Time-transient elimination scrutiny was executed and cobalt elimination rate was found relatively faster than cesium cations. Equilibrium sorption examinations confirmed that the sorption is proceeding via two diverse sites on the scavenger surface. Cobalt and cesium elimination is a spontaneous endothermic reaction of increased chaos. The attained results proved the high proficiency of the synthesized scavenger in the cations immobilization.
RESUMO
Concrete is widely used in civil engineering applications and the natural aggregates which used in concrete are scarce, but its demand is increasing. The disposal of rubber tyres poses a significant environmental challenge, as their decomposition releases harmful chemicals into the soil and water bodies over many years. Decomposition of tyres should be done in a smart way and hence came the emergence of mixing recycled rubber crumbs into concrete as Rubberised Concrete (RC). This paper provides an in-depth analysis of the mechanical properties of concrete such as Compressive Strength (fck), Tensile Strength (ft), Flexural Strength (fcr) of 7, 14, 28 days in replacement of fine aggregate with fine rubber (FR), and Coarse Aggregate with Coarse Rubber (CR). The results indicate that RC is more suitable for structural applications, including Reinforced Concrete columns, beams, slabs, than conventional concrete. The primary objective of the article is to explore the potential use of recycled rubber crumbs in concrete, referred to as Rubberised Concrete (RC), and to analyze its mechanical properties such as compressive strength, tensile strength, and flexural strength over different curing periods. Additionally, machine learning (ML) based prediction model has been developed for various strength characteristics of concrete mixtures at 28 days. The hyperparameter optimization using Grid Search CV with fivefold cross-validation have been performed to obtain the best hyperparameters. The model's performance is evaluated using metrics like MAE, MSE, RMSE, and R-squared values. Results reveal varying performances among different ML algorithms for predicting flexural, tensile, and compressive strengths.
RESUMO
In recent years, a great deal of work has been devoted to the development of thermoresponsive polymers that can be made into new types of smart materials. In this paper, a branched polymer, HTPB-g-(PNIPAM/PEG), with polyolefin chain segments as the backbone and having polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM) as side chains was synthesized by ATRP and click reactions using N3-HTPB-Br as the macroinitiator. This initiator was designed and synthesized using hydroxyl-terminated polybutadiene (HTPB) as the substrate. The temperature-responsive behavior of the branched polymer was investigated. The lower critical solution temperature (LCST) of the branched polymer was determined by ultraviolet and visible spectrophotometry (UV-vis) and was found to be 35.2 °C. The relationship between the diameter size of micelles and temperature was determined by dynamic light scattering (DLS). It was found that the diameter size changed at 36 °C, which was nearly consistent with the result obtained by UV-vis. The results of the study indicate that HTPB-g-(PNIPAM/PEG) is a temperature-responsive polymer. At room temperature, the polymer can self-assemble into composite micelles, with the main chain as the core and the branched chain as the shell. When the temperature was increased beyond LCST, the polyolefin main chain along with the PNIPAM branched chain assembled to form the nucleus, and the PEG branched chain constituted the shell.
RESUMO
The COVID-19 pandemic caused by SARS-CoV-2 remains a serious health concern worldwide due to outbreaks of SARS-CoV-2 variants that can escape vaccine-acquired immunity and infect and transmit more efficiently. Therefore, an appropriate testing method for COVID-19 is essential for effective infection control and the prevention of local outbreaks. Compared to reverse-transcription polymerase chain reaction (RT-PCR) tests, antigen tests are used for simple point-of-care testing, enabling the identification of viral infections. In this study, we tested the clinical usefulness of the FUJIFILM COVID-19 Ag test, an antigen test based on silver amplification and immunochromatographic technology. The FUJIFILM COVID-19 Ag test was shown to detect a lower viral concentration as compared to other conventional kits without significant performance loss in detecting prevalent SARS-CoV-2 variants. We tested nasopharyngeal and nasal swabs from a single patient during two different epidemic periods dominated by various SARS-CoV-2 variants. We observed that the sensitivity of the FUJIFILM COVID-19 Ag test was 95.7% and 85.7% in nasopharyngeal and nasal swabs, respectively. These results suggest that the FUJIFILM COVID-19 Ag test is highly sensitive and applicable when RT-PCR testing is unavailable. Furthermore, these results indicate that high-frequency testing using nasal swab specimens may be a valuable screening strategy.
RESUMO
Ceratocystis platani (CP), an ascomycetous fungus, is the agent of canker stain, a lethal vascular disease of Platanus species. Ceratocystis platani has been listed as a quarantine pest (EPPO A2 list) due to extensive damage caused in Southern Europe and the Mediterranean region. As traditional diagnostic assays are ineffective, a Real-Time PCR detection method based on EvaGreen, SYBR Green, and Taqman assays was previously developed, validated in-house, and included in the official EPPO standard PM7/14 (2). Here, we describe the results of a test performance study performed by nine European laboratories for the purpose of an interlaboratory validation. Verification of the DNA extracted from biological samples guaranteed the high quality of preparations, and the stability and the homogeneity of the aliquots intended for the laboratories. All of the laboratories reproduced nearly identical standard curves with efficiencies close to 100%. Testing of blind-coded DNA extracted from wood samples revealed that all performance parameters-diagnostic sensitivity, diagnostic specificity, accuracy and reproducibility-were best fit in most cases both at the laboratory and at the assay level. The previously established limit of detection, 3 fg per PCR reaction, was also validated with similar excellent results. The high interlaboratory performance of this Real-Time PCR method confirms its value as a primary tool to safeguard C. platani-free countries by way of an accurate monitoring, and to investigate the resistance level of potentially canker stain-resistant Platanus genotypes.
RESUMO
The current standard diagnostic tests for Schistosoma mansoni are the Kato-Katz and circulating cathodic antigen (CCA) techniques. However, these techniques have been documented to have several limitations that have a direct impact on schistosomiasis control programmes. Therefore, there is a need for more sensitive and specific tests for diagnosing schistosomiasis. This study compared the performance of quantitative polymerase chain reaction (qPCR), Kato-Katz, and point-of-care circulating cathodic antigen (POC-CCA) techniques in the diagnosis of S. mansoni infection in the Mwea irrigation scheme, Kirinyaga County in Central Kenya. We carried out a cross-sectional study on 357 individuals residing in four villages in the Mwea irrigation scheme. The participants provided urine and stool samples which were screened for S. mansoni infections using the three techniques. The prevalence of S. mansoni by each technique was calculated and 95% confidence intervals estimated using binomial regression model. Sensitivity and specificity were determined using 2â¯×â¯2 contingency tables and compared using the McNemar's chi-square test. Positive and negative predictive values were also determined using the weighted generalized score chi-square test for paired data. The study showed that the prevalence of S. mansoni was 32.8%, 62.5% and 72.8% using Kato-Katz, POC-CCA and qPCR techniques, respectively. Further, when using Kato-Katz as a gold standard, POC-CCA sensitivity was 78.6% and specificity was 45.4%, while qPCR sensitivity was 97.4% and specificity was 39.2%. When using qPCR as the gold standard, Kato-Katz sensitivity was 43.8% and specificity was 96.9%, while POC-CCA sensitivity was 78.1% and specificity was 79.4%. Finally, when using the averaged results from the three techniques as the gold standard, the sensitivity was 41.6%, 79.4% and 92.5% for Kato-Katz, POC-CCA and qPCR, respectively, with a specificity of 100% for all techniques. Kato-Katz technique showed low sensitivity compared to the POC-CCA and qPCR despite it being the most commonly preferred method of choice to diagnose S. mansoni infections. qPCR showed superior sensitivity followed by POC-CCA, hence it can be used as an alternative or to confirm the results obtained by the Kato-Katz technique.
RESUMO
PURPOSE: The clinical usefulness of computer-aided detection of cerebral aneurysms has been investigated using different methods to present lesion candidates, but suboptimal methods may have limited its usefulness. We compared three presentation methods to determine which can benefit radiologists the most by enabling them to detect more aneurysms. MATERIALS AND METHODS: We conducted a multireader multicase observer performance study involving six radiologists and using 470 lesion candidates output by a computer-aided detection program, and compared the following three different presentation methods using the receiver operating characteristic analysis: (1) a lesion candidate is encircled on axial slices, (2) a lesion candidate is overlaid on a volume-rendered image, and (3) combination of (1) and (2). The response time was also compared. RESULTS: As compared with axial slices, radiologists showed significantly better detection performance when presented with volume-rendered images. There was no significant difference in response time between the two methods. The combined method was associated with a significantly longer response time, but had no added merit in terms of diagnostic accuracy. CONCLUSION: Even with the aid of computer-aided detection, radiologists overlook many aneurysms if the presentation method is not optimal. Overlaying colored lesion candidates on volume-rendered images can help them detect more aneurysms.
Assuntos
Angiografia Cerebral/métodos , Interpretação de Imagem Assistida por Computador/métodos , Aneurisma Intracraniano/diagnóstico , Angiografia por Ressonância Magnética/métodos , Humanos , Curva ROC , Estudos RetrospectivosRESUMO
High-throughput sequencing (HTS) technologies and bioinformatic analyses are of growing interest to be used as a routine diagnostic tool in the field of plant viruses. The reliability of HTS workflows from sample preparation to data analysis and results interpretation for plant virus detection and identification must be evaluated (verified and validated) to approve this tool for diagnostics. Many different extraction methods, library preparation protocols, and sequence and bioinformatic pipelines are available for virus sequence detection. To assess the performance of plant virology diagnostic laboratories in using the HTS of ribosomal RNA depleted total RNA (ribodepleted totRNA) as a diagnostic tool, we carried out an interlaboratory comparison study in which eight participants were required to use the same samples, (RNA) extraction kit, ribosomal RNA depletion kit, and commercial sequencing provider, but also their own bioinformatics pipeline, for analysis. The accuracy of virus detection ranged from 65% to 100%. The false-positive detection rate was very low and was related to the misinterpretation of results as well as to possible cross-contaminations in the lab or sequencing provider. The bioinformatic pipeline used by each laboratory influenced the correct detection of the viruses of this study. The main difficulty was the detection of a novel virus as its sequence was not available in a publicly accessible database at the time. The raw data were reanalysed using Virtool to assess its ability for virus detection. All virus sequences were detected using Virtool in the different pools. This study revealed that the ribodepletion target enrichment for sample preparation is a reliable approach for the detection of plant viruses with different genomes. A significant level of virology expertise is needed to correctly interpret the results. It is also important to improve and complete the reference data.
RESUMO
We evaluated the intraobserver variability of physicians aided by a computerized decision-support system for treatment response assessment (CDSS-T) to identify patients who show complete response to neoadjuvant chemotherapy for bladder cancer, and the effects of the intraobserver variability on physicians' assessment accuracy. A CDSS-T tool was developed that uses a combination of deep learning neural network and radiomic features from computed tomography (CT) scans to detect bladder cancers that have fully responded to neoadjuvant treatment. Pre- and postchemotherapy CT scans of 157 bladder cancers from 123 patients were collected. In a multireader, multicase observer study, physician-observers estimated the likelihood of pathologic T0 disease by viewing paired pre/posttreatment CT scans placed side by side on an in-house-developed graphical user interface. Five abdominal radiologists, 4 diagnostic radiology residents, 2 oncologists, and 1 urologist participated as observers. They first provided an estimate without CDSS-T and then with CDSS-T. A subset of cases was evaluated twice to study the intraobserver variability and its effects on observer consistency. The mean areas under the curves for assessment of pathologic T0 disease were 0.85 for CDSS-T alone, 0.76 for physicians without CDSS-T and improved to 0.80 for physicians with CDSS-T (P = .001) in the original evaluation, and 0.78 for physicians without CDSS-T and improved to 0.81 for physicians with CDSS-T (P = .010) in the repeated evaluation. The intraobserver variability was significantly reduced with CDSS-T (P < .0001). The CDSS-T can significantly reduce physicians' variability and improve their accuracy for identifying complete response of muscle-invasive bladder cancer to neoadjuvant chemotherapy.
Assuntos
Sistemas de Apoio a Decisões Clínicas , Neoplasias da Bexiga Urinária , Humanos , Variações Dependentes do Observador , Médicos , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
RATIONALE AND OBJECTIVES: To evaluate whether a computed tomography (CT)-based computerized decision-support system for muscle-invasive bladder cancer treatment response assessment (CDSS-T) can improve identification of patients who have responded completely to neoadjuvant chemotherapy. MATERIALS AND METHODS: Following Institutional Review Board approval, pre-chemotherapy and post-chemotherapy CT scans of 123 subjects with 157 muscle-invasive bladder cancer foci were collected retrospectively. CT data were analyzed with a CDSS-T that uses a combination of deep-learning convolutional neural network and radiomic features to distinguish muscle-invasive bladder cancers that have fully responded to neoadjuvant treatment from those that have not. Leave-one-case-out cross-validation was used to minimize overfitting. Five attending abdominal radiologists, four diagnostic radiology residents, two attending oncologists, and one attending urologist estimated the likelihood of pathologic T0 disease (complete response) by viewing paired pre/post-treatment CT scans placed side-by-side on an internally-developed graphical user interface. The observers provided an estimate without use of CDSS-T and then were permitted to revise their estimate after a CDSS-T-derived likelihood score was displayed. Observer estimates were analyzed with multi-reader, multi-case receiver operating characteristic methodology. The area under the curve (AUC) and the statistical significance of the difference were estimated. RESULTS: The mean AUCs for assessment of pathologic T0 disease were 0.80 for CDSS-T alone, 0.74 for physicians not using CDSS-T, and 0.77 for physicians using CDSS-T. The increase in the physicians' performance was statistically significant (P < .05). CONCLUSION: CDSS-T improves physician performance for identifying complete response of muscle-invasive bladder cancer to neoadjuvant chemotherapy.
Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Quimioterapia Adjuvante , Sistemas de Apoio a Decisões Clínicas , Aprendizado Profundo , Feminino , Humanos , Imunoglobulina G/uso terapêutico , Masculino , Melfalan/uso terapêutico , Pessoa de Meia-Idade , Terapia Neoadjuvante , Invasividade Neoplásica , Estadiamento de Neoplasias , Curva ROC , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias da Bexiga Urinária/patologiaRESUMO
An international test performance study (TPS) was organised to generate validation data for three molecular Synchytrium endobioticum tests: van den Boogert et al. (European Journal of Plant Pathology 113, 47-57, 2005), and van Gent-Pelzer et al. (European Journal of Plant Pathology, 126, 129-133, 2010) for the detection of S. endobioticum, and the pathotype 1(D1) identification test described by Bonants et al. (European Journal of Plant Pathology, 143, 495-506, 2015). Two TPS rounds were organised focussing on different test matrices, i.e. round 1: warted potato tissue, and round 2: resting spore suspensions. When using the tests for detection and identification of S. endobioticum in warted potato tissue, no significant differences were observed for diagnostic sensitivity, diagnostic specificity, overall accuracy, analytical sensitivity and robustness. When using the tests for detection and identification of S. endobioticum in resting spore suspensions, the van den Boogert and van Gent-Pelzer tests significantly outperform the Bonants test for diagnostic sensitivity and diagnostic specificity. For overall accuracy and analytical sensitivity, the van Gent-Pelzer significantly outperforms the van den Boogert and Bonants tests and is regarded as the test of choice when identifying S. endobioticum from resting spores. Tests regarded fit for purpose for routine testing of wart material and resting spore suspensions are proposed for the update of EPPO standard PM7/28(1) Synchytrium endobioticum.
RESUMO
The leaching of hazardous substances from municipal solid waste incineration (MSWI) bottom ash (BA) has been studied in many different scales for several years. Less attention has been given to the mechanical performance of MSWI BA in actual civil engineering structures. The durability of structures built with this waste derived material can have major influence on the functional properties of such structures and also the potential leaching of hazardous substances in the long term. Hence, it is necessary to properly evaluate in which type of structures MSWI BA can be safely used in a similar way as natural and crushed rock aggregates. In the current study, MSWI BA treated with ADR (Advance Dry Recovery) technology was used in the structural layers of an interim storage field built within a waste treatment centre. During and half a year after the construction, the development of technical and mechanical properties of BA materials and the built structures were investigated. The aim was to compare these results with the findings of laboratory studies in which the same material was previously investigated. The field results showed that the mechanical performance of recovered BA corresponds to the performance of natural aggregates in the lower structural layers of field structures. Conversely, the recovered MSWI BA cannot be recommended to be used in the base layers as such, even though its stiffness properties increased over time due to material aging and changes in moisture content. The main reason for this is that BA particles are prone for crushing and therefore inadequate to resist the higher stresses occurring in the upper parts of road and field structures. These results were in accordance with the previous laboratory findings. It can thus be concluded that the recovered MSWI BA is durable to be used as a replacement of natural aggregates especially in the lower structural layers of road and field structures, whereas if used in the base layers, an additional base layer of natural aggregate or a thicker asphalt pavement is recommended.